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ABSTRACT

Newcastle disease (ND) is a highly contagious viral bird disease affecting the domestic and

other wild birds. The disease is a major threat to the farming of village chicken by small,

medium, and large scale farmers.

In this dissertation, a non-linear deterministic mathematical model of ND to study the dynam-

ics, control and the economic loss of the village poultry with village chicken population, wild

birds population of virus in the environment is formulated and analyzed.

The basic reproduction number(R0) which represents the number of secondary cases where one

case would produce in a completely susceptible population is derived using the Next Genera-

tion Matrix technique. The bifurcation analysis of the equilibrium points shows that a model

exhibits the forward bifurcation meaning that the R0 less than a unit is a suf�cient condition

to reduce the transmission of ND in village chicken population. The sensitivity analysis of the

parameters in R0 were computed using a normalized forward sensitivity analysis, results show

that the transmission coef�cient of the Newcastle disease virus between the hosts and the envi-

ronment is found to be the most positive sensitive parameter in the model.

A model is then extended to include three time dependent variables: vaccination, culling and

the environmental hygiene and sanitation control strategies. To determine the best control strat-

egy to mitigate the ND burden, the optimal control techniques are applied. The existence of

the optimal control problem is proved with the necessary conditions for optimality determined

using the Pontryagin’s Maximum Principle. Numerical simulations were performed using the

forward-backward sweep iterative scheme of Runge-Kutta method of order four.

Finally, a cost-effectiveness analysis is performed using the Incremental Cost-Effective Ra-

tio (ICER). The results showed that the vaccination control strategy indicates the lowest cost

compared to other control measures. The economic burden of the ND to chicken farmers, is

considered as the total annual expenditure that a chicken farmer can incur to rescue the at risk

chicken population from the ND is also investigated. The economic data of the model were

collected from ten villages of Bagamoyo and Kibaha, Tanzania. Results from this study in-

dicate that the recurrence of the ND in the village chicken population could lead to a serious

economic loss at family level in this already �nancially constrained environment where small

and medium farmers operate. The results obtained shows that there was 22:5% loss from their

expected pro�t post Newcastle outbreaks in 2017. Also the results show that the occurrence of
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the ND leads to an average range of 482:89� 541:30$ economic loss at family in 2017.

Therefore, for the effective control of NDV and its transmission we recommend vaccination to

be paired with regular cleaning of chicken yards.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Newcastle disease (ND) is a highly contagious viral disease affecting many domestic and wild

avian species (Gilchrist, 2005; Ashraf and Shah, 2014; Brown and Bevins, 2017). The sus-

ceptibility of Newcastle disease virus (NDV) to the host depends on the isolates of the poultry

groups among the avian species. The �rst isolate includes a group of chicken whilst the second

isolate comprises of the group of other domestic and wild birds (Munir et al., 2016). The effects

of ND are more notable to chicken due to their high susceptibility than to other avian species

(Alexander et al., 2004).

The disease is caused by Avian Paramyxovirus Serotype 1 (APMV-1) virus in paramoxyviridae

family (Yongolo et al., 2002; Munir et al., 2016) and it is a major constraint to the development

of village chicken industry particularly in Africa and Asia (Otte et al., 2004; Ashraf and Shah,

2014). High mortality rate of up to 90% have been documented with sometimes devastation of

whole �ocks during an outbreak (Yongolo et al., 2002; Hugo et al., 2017). ND is characterized

by: coughing, head twisting, paralyzed legs and wings,greenish diarrhea, and other nervous

symptoms that follow in one or two weeks (Alexander et al., 2004; Oluwayelu et al., 2014).

Figure 1: The clinical signs of ND (Source:https:www.agricpays.com)

However, these signs and symptoms are not pathognomonic thus it becomes hard to distinguish

1



the disease from other avian paramyxovirus diseases (Alexander et al., 2004). The rates nor-

mally vary depending on the age of the host, virulence and the strains of the pathotypes (velo-

genic, mesogenic and lentogenic), susceptibility of the host, other diseases in the �ock, environ-

mental in�uences, and the vaccination history of the birds (Brown and Bevins, 2017). Though

chickens among other domestic birds are mostly affected by the disease, young birds in a �ock

are extremely susceptible to disease where death rate reaches the peak of 100% (Knueppel et al.,

2009). Though ND is not common to human and other animals, the disease is transmissible to

humans, with conjunctivitis, in�uenza-like symptoms being the most common clinical signs

(Spradbrow, 2001; Ibitoye et al., 2013).

The disease under consideration is of global importance as it could affects both poultry and

humans. It is primarily posing a potential threat to village poultry farming by small and medium

farmers leading to serious economic losses to an already �nancially constrained environment.

1.1.1 History of Newcastle Disease

The �rst documented outbreaks were in Java, Indonesia (1926) and in Newcastle-upon-Tyne,

England in 1927 (Alexander, 2001; Kapczynski et al., 2013). However; there were earlier

reports of similar disease outbreaks in Central Europe before this date that wiped out all the

domestic fowls in the North-West Isles of Scotland in 1896 (Macpherson, 1956). The disease

is now endemic in Asia, the Middle East, Africa, Central and South America (Alexander et al.,

2004). Its history, origin and spread to Tanzania have not been reported but it is documented in

some countries of Africa and the rest of the world (Awan et al., 1994; Yongolo et al., 2011).

1.1.2 Transmission Dynamics of Newcastle Disease

Although the ND is endemic in rural poultry, many aspects of its epidemiology have not fully

understood. In rural environment, poultry are managed in semi-free range and/or free range

system where chickens are left freely searching for food themselves. Under the free range sys-

tem village chickens get the ND and primarily spreads through direct contacts of the susceptible

birds with the contaminated water, food, droppings or discharges of the infected birds and other
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farm utensils (Dortmans et al., 2011) of the infected birds or carrier birds and other un-infected

birds in their �ocks. Furthermore, the carrier birds may shade NDV in their discharges and

contaminate the environment. Depending on the season, the virus can survive for days in the

environment, forage, water and in the bird’s feathers. The . Interactions of the wild birds and the

chickens when searching for food is another way that virus passes to village chicken (Alexander

et al., 2004; Gilchrist, 2005).

1.1.3 Poultry Industry in Tanzania

The poultry industry in Tanzania is greatly dominated by local chickens and exotic birds (breed

chickens, turkeys, guinea fowl, geese, parrots, pigeons and ducks). This industry though it may

contribute very little to the growth domestic product (GDP), it is possibly the most important

socio-economic factor of the rural population along with subsistence agriculture (Yongolo et al.,

2002). It is a good enterprise for less privileged groups in villages especially women and youth

who are left behind economically (Alders et al., 2009). The enterprise provides them with

employment, nutritious food and income depending on the number of chicken available per

household (Alexander et al., 2004; Alders et al., 2009). In 2011, Tanzania had an estimate of 56

millions chicken, where 80% of chicken were local breeds reared traditionally by the free range

system and the rest (that is, 20%) were exotic breeds (Swai et al., 2011).

1.1.4 The Study Area

Pwani Region is one among the administrative Regions in Tanzania Mainland. It is located

between latitude 60 and 80 South of Equator and longitude 37030 and 400 East Greenwich. It

borders the Indian ocean and Dar es salaam Region in East, Morogoro Region in West, Tanga

Region in North and Lindi Region in South. The Region has �ve Districts namely: Kisarawe,

Mkuranga, Ru�ji, Bagamoyo and Kibaha. Our study is focusing in two Districts of Kibaha and

Bagamoyo which have a total estimate of 1; 817; 200 village chickens. In Bagamoyo district

four villages namely: Dunda, Kibindu, Lugoba and Zinga villages were considered for the

study. However, six villages namely: Gwata, Soga, Janga, Kilangala, Ruvu and Mlandizi from
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Kibaha district were selected for data collection.

Figure 2: A map of Bagamoyo and Kibaha showing four surveyed villages in Bagamoyo and six

surveyed villages in Kibaha Districts, Tanzania

1.2 Statement of the Research Problem

Different studies have been conducted on the village chicken looking at different aspects for

the transmission dynamics of ND (Alexander et al., 2004; Yongolo et al., 2011; Rist et al.,

2015). Those literature have not adequately studied the transmission dynamics and control of

ND with environment and wild birds reservoirs. However, interventions to reduce the spread of

ND have been proposed but no study has considered the optimal control of the ND and other
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poultry diseases that hinders the village poultry farming. The aim of this study is to formulate

and analyze mathematical model of the ND transmission and its control in village chicken

population.

1.3 Research Objectives

1.3.1 General Objective

The general objective of this study is to develop a mathematical model for the transmission,

control and economic loss of ND in the village chicken.

1.3.2 Speci�c Objectives

The speci�c objectives of this study are:

(i) To formulate and analyze a basic mathematical model for ND.

(ii) To formulate and analyze a mathematical model of ND with vaccination, culling and

environmental hygiene and sanitation control strategies.

(iii) To evaluate the cost-effectiveness in the control of ND.

(iv) To analyze the economic loss of ND at the family level.

1.4 Research Questions

(i) How to formulate a model for the transmission dynamics of ND with environment and

wild birds reservoir?

(ii) How to formulate a transmission dynamics model of ND with an optimal control?

(iii) What is the Cost-Effectiveness in the control of ND?

(iv) To what extent does the recurrence of ND affect the economy of people at family level?

5



1.5 Justi�cation of the Research Problem

The signi�cance of this study are:

(i) Provision of mathematical framework for determination of the control strategies of the

ND among the village chicken population.

(ii) Provision of understanding on the socio-economic importance of the ND as it affects both

human and village chicken industry.

(iii) Provision of a platform for future researches on the transmission of ND among the village

chicken.

1.6 Rationale of the Study

Understanding the transmission dynamics of the ND will help farmers, Veterinary of�cers and

the policy makers to plan the best time for different interventions so as to reduce the possibilities

for the spread of the Newcastle disease. The selected research topic aims to �ll the gap that has

been left behind by other theoretical and empirical studies by developing a mathematical model

that shows the epidemiology of ND in the village chicken population. Identifying optimal

controls of the ND will help poultry keepers and policy makers to plan for the best time and the

control measures for reducing the spread of NDV. Furthermore, this study will help farmers to

improve their economy by optimizing the number of poultry that can be reared per households.

1.7 Basic Mathematical Concepts

1.7.1 Dynamical System

A dynamical system _X = G (X; t) is a function which describes the time dependence of a point,

X 2 Rn, in a geometrical space.
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1.7.2 Basic Reproduction Number

The basic reproduction number (R0) is de�ned as the average number of secondary cases

caused by one infectious individual introduced in a population that consisting of entirely sus-

ceptibles (Foppa, 2005; Hartemink et al., 2008; Mwanga et al., 2014). This number tells and

quanti�es the ability of an infectious disease to invade a purely susceptible population and per-

sist (Foppa, 2005; Hartemink et al., 2008) and is measured as the spectral radius of the next

generation matrix i:e;R0 = �(FV � 1).

1.7.3 Next Generation Method (NGM)

It is a method developed by Van den Driessche and Watmough (2002) that give brief descrip-

tions on how to calculate the basic reproduction numberR0. This method is applied as follows;

Given a dynamical system

dXi

dt
= Gi (X; t) ; for i = 1; 2; :::; n 2 N (1)

where Xi be the status of the disease in the compartment i and suppose V +
i and V �

i be the rate

of transfer in and out of the compartment i, respectively. It also assumes that the disease free

equilibrium point of the dynamical; system is given by �0. Therefore,

dXi

dt
= Fi (t)� Vi (t) ; where; Vi = V �

i � V
+
i (2)

Then

F =
@Fi (�0)
@t

; V =
@Vi (�0)
@t

(3)

and lastly the basic reproduction number is found as the spectral radius of the Next Generation

Matrix (NGM) written as;

R0 = �
�
FV � 1�

(4)

1.7.4 Metzler Matrix

The real square matrix M = [mij] 2 Rn� n is called the Metzler matrix if its all off-diagonal

entries are nonnegative, i.e. mij � 0; i 6= j:
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1.7.5 Lipschitz condition

Let (Z; k:k) be a normed linear space, A dynamical system G (t;X(t)) : Z ! Z is said to be

Lipschitz if 9K � 0 for which the Lipschitz condition kG(X1)�G (X2)k
X1 � X2

� K is satis�ed for all

pairs X1; X2 2 Z , X1 6= X2: The bound K is called a Lipschitz constant for G.

1.7.6 The Optimal Control Theory

The optimal control theory is a mathematical tool that helps the designing of the optimization

systems which are in�uenced by external factors to be controlled (Sadiq et al., 2014; Kahuru

et al., 2017b; Hugo et al., 2017). The theory helps to describe different external factors of

complex models and provide control measures by analyzing the necessary conditions of optimal

control using the Pontryagin’s maximum principle (Lenhart and Workman, 2007; Kahuru et al.,

2017b). The theory was developed by Lev S. Pontryagin (1968� 1988) and his co-workers

and over decades has been used for the analysis of the optimality of the solutions in different

complex mathematical models from biological sciences (Lenhart and Workman, 2007; Sch·nttler

and Ledzewicz, 2012; Kahuru et al., 2017b).

Optimal Control theory as a mathematical tool has different procedures and/or ways of reaching

the optimality of the desired problem. Lets consider the controlled dynamical system:
8
><

>:

_X (t) = G (t;X (t) ; u (t)) ; t > 0

X (0) = X0; X (T ) = XT

(5)

According to the dynamical system (5), X (t) refers to the state variable in a speci�ed time

t, X0 is the initial condition of the state variables, XT is the �nal condition of the state vari-

able and u (t) refers to time dependent control parameter. This model system is a continu-

ous dynamical system and is governed by the set of non-linear ordinary differential equations

(ODEs) under a �xed and/or free time interval. The state variable X (t) is enclosed in the Eu-

clidean space fX (t) 2 Rn : n 2 Ng and the control u (t) variable is Lebesgue measurable i:e

fu (t) 2 U 2 Rm : 0 � u (t) � Tg. The controls affects the dynamical system with the main

purpose of minimizing or maximizing the cost functional. We minimize the cost function,

J (u (t)) by �nding the primal control variable u� such that,
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J (u�
i ) = min

ui 2U
fJ (ui)g ; for i = 1; 2; ::; n 2 N (6)

1.7.7 Optimal Problem

A controlled system is an optimal problem _X (t) = (X (t) ;U ;G) consisting of a state space

X (t), a control set U , and the dynamics G (Sch·nttler and Ledzewicz, 2012). Throughout the

dissertation we use the following notations for the data de�ning the optimal problem (5);

(i) The state space X (t) is an open and connected subset of Rn.

(ii) The control set U is a subset of Rm

1.7.8 The Cost Function

The cost or objective function is a mathematical equation describing the production output

that corresponds to the maximization or minimization of the target with respect to the optimal

problem and the initial condition such that;

Maximize=Minimize J (t;X; u) =
Z tf

t0
fG (t;X (t) ; u (t))g dt (7)

subject to the state equation;
_X (t) = G (X (t) ; u (t)) (8)

and the initial and terminal conditions in (5)

X 2 Rn : X (t0) = X0; X (tf ) = XT ; t 2 [t0; tf ] (9)

where u (t) is the control variable and tf stands for the �nal time on the control trajectory.

A state variable X (t) is an open and connected subset of the Euclidean space Rn that character-

ize the behavior of the dynamical system at an instantly time t. A control set is a set of points

characterized by u (t) 2 U 2 Rm, m 2 N. A control variable u(t) is said to be an admissible

control if it is piecewise continuous de�ned on some time interval t0 � t � tf with range in the

control region U ; u(t) 2 U , 8t 2 tf .
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1.7.9 Equilibrium Point

Let D 2 Rn and f : D 7! Rn be a nonlinear vector �eld. Then any point �X that satis�es the

condition f
� �X; t

�
= 0;8t > 0 is an equilibrium point of the system f (Hunter, 2011; Selemani

et al., 2016; Olaniyi et al., 2016).

1.7.10 Positive Invariant Solution

D is a positively invariant set for a dynamic system _X = G(t;X(t)) if every trajectory X(t)

which starts from a point X(0) 2 D remains in D, 8t > 0:

1.7.11 Optimal Trajectory

An optimal trajectory (X � ) refers to the set of constraints which its performance satis�es the

condition of minimizing or maximizing the cost function J (t;X; u).

1.7.12 Optimal Solution

An optimal solution is a feasible solution of the optimal problem where the cost function

reaches its minimum or maximum value. For the case of the minimization problem, a solu-

tion (t� ; X � ; u� ) is optimal if J (t� ; X � ; u� ) � J (t;X; u) for all admissible (t;X; u). u� is

the optimal control variable which gives an optimal trajectory X � of the system (5).

1.7.13 Hamiltonian Function

According to Poggiolini and Spadini (2011), Sch·nttler and Ledzewicz (2012) and Mwanga et al.

(2014), the Hamiltonian functionH of the optimal control problem is de�ned as

H : R� [0;1)� Rn � Rm ! R (10)
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with

H(t;X; u; �) = L(t;X; u) + �f(t;X; u): (11)

where L(t;X; u) is the Lagrangian function and � = �(t) stands for the adjoint or co-state
variable of the function. X and u are real-valued functions on [t0; tf ] with values in Rn and

Rm respectively. The adjoint or Co-state variable � (t) is a variable in the Hamiltonian function

which is used for optimizing the solution of the controlled problem.

1.7.14 Pontryagin’s Maximum Principle (PMP)

The Pontryagin’s Maximum Principle (PMP) states the necessary conditions that an optimal

trajectory of the optimal control problem must hold (Evans, 1983; Anita et al., 2011). The

optimality of a solution is reached when all of the necessary conditions are ful�lled in a way that

an optimal solution exists and is unique (Anita et al., 2011; Sch·nttler and Ledzewicz, 2012). By

considering a control system in equation (5), the PMP necessary conditions holds only if there

exists an adjoint variable �(t) together with the state variables X (t) and the optimal control

u (t) such that in terms of the Hamiltonian H, the adjoint condition, transvesality condition,

and the optimal condition holds.

Theorem 1.1

Pontryagin’s Maximum Principle.

Let (t;X � ; u� ) be a controlled trajectory de�ned over the interval [t0; tf ] with the control u�

piecewise continuous. If (t;X � ; u� ) is optimal, then there exist an adjoint or a co-state variable

� (t) such that the following conditions are satis�ed:

(i) Non-triviality of the multipliers: (�(t)) 6= 0 for all t 2 [t0; tf ].

(ii) The adjoint variable � (t) is a solution to the time-varying linear differential equation

� _� (t) = HX (X � (t) ; � (t) ; u� ) (12)

where X stands for the state variables in the model.

(iii) The Transvesality condition: the �nal point of the controlled trajectory.
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�i (tf ) = 0 for i = 1; 2; :::; r; r 2 N (13)

(iv) The Optimal condition

_Huj = 0 for j = 1; 2; :::; n; n 2 N (14)

The Pontryagin’s Maximum Principle is stated depending on the following:

(i) The time or source of the desired dependent time

(ii) Dimension and regularity of the source of the desired source

(iii) The cost containing only the �nal part, the running part or both

(iv) The time being �xed or free

After the formulation of the optimal cost function, then the existence of the control variable is

proven. Thereafter the principle is used to characterize the control variables where an optimal

solution of the model is obtained.

1.7.15 Forward-Backward Sweep Method (FBSM)

The Forward-Backward Sweep method (FBSM) is the indirect technique for solving numeri-

cally optimal control problems (McAsey et al., 2012; Mwanga et al., 2014). FBSM has the

following successive steps;

(i) The total time is divided into N sub-intervals irrespectively to the state
�!
X = (X1; X2; :::; XN+1) and the Co-state variables as

�!
� = (�1; �2; :::; �N+1)

(ii) The controls are assumed to take zero values for starting an iteration such that
�!
U = [0; 0; ::; 0].
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(iii) With the initial condition X (0) = X0, the state solutions in the ODE with the controls

are solved forwardly by using the forward in time Runge-Kutta method of order four.

(iv) With the transvesality condition �N+1 = � (tf ) where tf is a �nal time, the values for

u (t) and X (t) from the Co-state differential equation are solved by the backward in time

Runge-Kutta method of order four.

(v) The update of the control is done by entering the new X and � through the rule

u� = min fumax;max (usig; umin)g (15)

where the boundedness of controls is de�ned as;

u� =

8
>>><

>>>:

umin if @H
@u < 0

umin < usig < umax if @H
@u = 0

umax if @H
@u > 0

(16)

(vi) If the last preceding iterations are negligible close such that jXN +1 � XN � 1 j
jXN j < �, then the

last iteration is the complete solution otherwise return to step (iii) above.

1.7.16 Runge-Kutta Method (RK4)

The 4th order Runge Kutta method is a built in MATLAB software used to approximate the

solution to the �rst order differential equation (ODE’s) of the form;

dX
dt

= G (X (t) ; t) ; X (t0) = X0 (17)

The 4th order Runge Kutta scheme starts when an initial value of the function is given to start

the algorithm. When h > 0 takes the algorithm to;

Xn+1 = Xn +
h
6

[k1 + 2k2 + 2k3 + k4] ; with n = 1; 2; :::

k1 = G (X (t0) ; t0)

k2 = G
�
X (t0) ; t0 + k1

h
2
; t0 +

h
2

�

k3 = G
�
X (t0) ; t0 + k2

h
2
; t0 +

h
2

�

k4 = G (X (t0) ; t0 + k3h; t0 + h)

(18)
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where as; k1 describes the slope of the differential equation dX
dt at the beginning of the �rst time

t = t0, k2 at the mid-point at the time step t = t0 + h=2 using the value of k1, k3 half way

through the mid point at the time step t = t0 + h=2 using the value of k2 and k4 estimates the

slope of the function at the end point using time interval t = t0 + h and the value of k3.

1.7.17 Convergent Criterion of Ordinary Differential Equation (ODE)

A steady state solutionX � (t) of a dynamical system _X = G (X; t) is stable if, for any arbitrarily

small � > 0, 9� > 0 such that, for any trajectory X (t) for which k X (0)�X � (0) k< � , then

the inequality k X (t)�X � (t) k< � is satis�ed 8t > 0 (Anishchenko et al., 2014). According

to Tumwiine et al. (2010); Selemani et al. (2016) and Wiggins (2003), a steady state X � (t) is

stable iff all initial trajectories in an open set X 2 Rn moves towards X � (t) and remain near it

8t � 0 and is unstable if moves away from X � (t).

1.7.18 The Outline of the Dissertation

In this work, the review of the related literatures is done in Chapter two. The Chapter covers the

review of previous works in the dynamics of ND, Optimal Control Theory as well as the cost

effectiveness on various disease transmission models.

Chapter three of this work covers the formulation of the ND basic transmission model, its

analysis on the basic properties of the model to include but not limited the invariant region,

positivity and the equilibrium points of the model. However, the Chapter covers the area of

computation of the basic reproduction number, the sensitivity of the model parameters, stability

analysis of the equilibria of the model and last covers the simulation of the basic model.

Chapter three is then extended to include the control variables. In this part, vaccination, culling

and the environmental hygiene and sanitation control variables are added to the basic model

followed with its analysis to investigate the best countermeasure for limiting the spread of the

ND among the village chicken. Then followed with the Cost-Effectiveness analysis which is

done by using the Increment Cost-Effectiveness Ratio (ICER) method. The Chapter also covers
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the analysis of the economic loss of the ND to village chicken farmers at a family level.

Chapter four of this work covers the methods and �ndings followed with the conclusion and

recommendations for future works.
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CHAPTER TWO

LITERATURE REVIEW

This section review and discuss literatures on ND ranging from clinical and theoretical studies.

It also cover areas of mathematical modeling for poultry diseases, explore intervention strategies

for control of different diseases, optimal control theory as well as the cost- effective techniques

for the control of infectious disease.

Yongolo et al.(2002) conducted a study in Morogoro and Tabora Regions, involving ducks and

village chicken. In each region, one district with �ve randomly selected villages was consid-

ered for the study. The aim was to study the ND and Infectious bursal disease (IBD) among

free-range village chicken in Tanzania. Standardized questionnaires were used for data collec-

tions among chicken farmers. In the study, the con�rmation of the NDV was achieved through

isolation of the virus, the clinical and pathological signs and the characterization of the �eld

virus strains. However, through the isolations of the virus and the serological survey, it was

discovered that ND is a seasonal poultry disease that occurs between June and October. The

APMV-1 (serotype-1) among other serotypes was identi�ed as the main causative of the ND.

Also the isolations of NDV among the domestic ducks revealed the role played by the ducks

in the epidemiology of ND in the free-range system in Tanzania. The study recommended the

need on the control of ND before the active period of NDV in June while taking considerations

on age groups of the chicken. Also the study recommended the need on researching for other

poultry diseases and risk factors for reducing high mortality rates in chicken.

Alexander et al. (2004) reviewed the transmission dynamics of ND among local chicken as

one of the constraints on increasing the small-scale poultry production. The review covered

the origin and nature of ND, its characteristics, epidemiology, symptoms and its control. The

study aimed on making a reference and platform for the control of ND in developed countries.

However, a study pointed out the avian paramyxovirus 1 (APMV-1) virus as the main cause of

ND in indigenous chicken. The study also revealed that the prevalence of ND in local chicken

or backyard �ocks in many countries are not well documented which sometimes become hard

to trace the occurrence of the disease in those areas. Also the study shows the role of wild

birds in the spread of the disease and its pathogenic varies widely depending on the virus,
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age of the host, the host species and the immune state of the host. Also, the review revealed

that the spread of the NDV was spotted to be caused by live birds for trading, movement of

people and equipments, poultry products, contaminated food or water, air borne spread and non-

avian hosts such as rodents, insects or scavenging animals. On the other hand, the biosecurity

and hygiene in the control of the ND was highlighted since its occurrence for the �rst time.in

Europe. The study revealed that live lentogenic, live mesogenic and inactivated vaccines have

been developed and applied in some countries for controlling the spread of ND. However, the

choice of vaccine in backyard chicken revealed to depend on their cost, the nature of service

providers, past experience, the climatic condition and the population distribution of chicken.

Lastly, the study pointed out the live vaccine to be less costly especially when produced locally

than the inactive vaccines.

McDermott et al. (2001) studied the role of improving the control of ND in southern Africa.

Both epidemiological and economic data were used to predict relative control of ND among

local chicken. A mathematical model for the transmission of ND in local was developed. The

developed model was the extension of the model for foot and mouth disease in Thailand (Perry

et al., 1999). The model was developed in the assumption that the transmission of ND to

commercial sector has different roots and possibility of infections. Also a model assumed that

no compartment of the recovered chicken after being attacked by the ND. Economic analysis of

ND and its control was also carried out. The study revealed that in order for the vaccination of

ND to be active it must be conducted frequently in a large population of the local chicken.

Daut et al.(2016) developed two mathematical models aimed on showing the in�uence of illegal

harvest and effects of age structurer of the wild wingled-Parakeets on the dynamic of ND.

Interactions of ND transmission and harvest were evaluated through their basic reproductive

numbers and the population dynamics of the wingled-Parakeets in a short time. The �ndings

showed the relationship between the introduction of ND in the Parakeets population with its

mortality. The results show that the population decreases up to its total population in two years.

However much harvest shows to reduce the spread of the ND in the Parakeets population. But

the second case showed a slight difference that means the age of the Parakeets can in�uence the

spread of ND though not in a very great extent.
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Rist et al. (2015) established a mathematical model to show the effects of poultry diseases on

the economy of people living in rural Madagascar. A proposed model have three sub models;

the epidemiological model that consists of poultry compartments, the income generation model

and the simple economic model. The coupled ecology-economic model was built in a sense that

poultry diseases are economical drivers on the people in rural Madagascar. Data for parameter-

ize the model were collected from 1520 households and from the demographical survey where

80 households pilot study was conducted on livestock health. Equilibrium monthly household

income was used to estimate the mean burden of disease as the percent of income lost to disease

for a range of potential transmission rates. The results from the sensitivity analyses were in-

cluded in the burden estimation to account for the high uncertainty in model parameter values.

Based on the Latin Hyper-cube sampling method, 1000 simulations were run, each with differ-

ent combination of parameters, at transmission rates from 0 to 1. An exponential increase in

the economic burden is observed at transmission rates below 0:4 while the burden approaches

a �xed value at higher transmission rates. The majority of simulations with a transmission rate

predicted a 10 � 25% loss of monthly income. PRCC results suggested that in the presence of

poultry disease, both economic and epidemiological parameters highly in�uenced the outcomes

of the model.

Hugo et al. (2017) formulated a deterministic compartmental eco-epidemiological model with

the optimal control of ND. The model has human and chicken as its populations. It incorporated

three control strategies; vaccination, human education campaign and treatments of the infected

human. Necessary conditions of optimal control were analyzed with the Pontryagin’s maxi-

mum principle. The cost effectiveness analysis techniques were employed and found that the

combinations of chicken vaccination and human education strategies are the best strategies to

be applied in the scarcity of the resources.

Seidu and Makinde (2014) formulated an optimal control model with the efforts of reducing

HIV/AIDS infections, irresponsibilities and non productivity in the work place. The model

incorporate four interventions aimed at reducing the spread of the disease in the working places.

The interventions include the efforts for reducing the infections of the susceptible individuals,

efforts for treating the infected individuals, control efforts at changing the behavior of people

around and the efforts aimed at reducing non productivity at the working places.
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Kahuru et al. (2017b) applied an optimal control techniques to minimize the number of the

infected human, animals and the sand �ea population in the dynamics of Tungiasis. In this

work, �ve control strategies are incorporated in the model as part of the efforts to reduce the

spread of the disease and the cost of the control among the human and animals populations.

Blayneh et al. (2009) applied the optimal control theory to study the effects of prevention and

treatment for the control of a malaria disease while reducing the cost of control. the results

shows that there are cost effective control efforts for treatment of the infectives as well as the

prevention of host-vector contacts.

Wang and Modnak (2011) developed a mathematical model of cholera dynamics. In this model,

three control namely: vaccination, theraupetic treatment and the water sanitation were included.

They applied the optimal control techniques aiming at minimizing the number of the infected

people as well as the cost of controls over a short period of time. The analysis of their model

showed that the combination of the multiple strategies is the the accurate measure to achieve

the optima; control of cholera.

Kim et al. (2012) used a deterministic differential equations to develop a plasmodium vivax

malaria model with the control terms. They performed the analysis and its numerical solutions.

Finally they suggested that the use of mosquito reduction strategies is more effective than the

personal protection.

Okosun et al. (2013) used a mathematical approach to study the cost-effectiveness on the con-

trols towards the prevention of malaria. In their model; the use of insecticide sprays, treating

of the infective human and the use of bed nets preventive measures were involved. They cal-

culated the Infection Averted Ratio (IAR) and then used the Incremental Coast-effectiveness

Ratio (ICER) to investigate the most cost-effective strategy for the control of malaria. In this

work, the combination of the insecticides splay and treating of the infected human have found

a cost-effective strategy above all.

Athithan and Ghosh (2015) formulated a non-liner mathematical model of malaria and extended

it to an optimal problem. They used the Pontryagin’s Maximum Principle to �nd the optimality

of the control. Simulation of the extended model shows better results than the model without
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control.

Kinene et al. (2015) developed an optimal model to study the control and the cost effective

intervention of the cassava brown streak disease (CBSD). In this model, two time dependent

intervention strategies were included. The Pontryagin’s maximum principle was used to es-

tablish the necessary conditions for the control of the CBSD. They also used the Incremental

cost-effectiveness Ratio (ICER) to analyze the cost effectiveness of the control strategies. They

concluded that, uprooting and burning of the infected plants is more cost effective than the

application of the combination of the chemical spray and uprooting of the infected plants.

Otieno et al. (2016) formulated a deterministic malaria transmission model which includes hu-

man and mosquito populations for controlling malaria disease in Kenya. Four time dependent

control variables namely; the use of Insect treated bed nets (ITNs), treated of infective human,

spray of insect sides and treated of pregnant women were included in the model. The aim of

this model was to �nd which strategy is effective and cost bene�t. The cost effective analysis

was done using the Incremental cost effective ratio (ICER),The analysis showed that, in the

endemic regions the combination of insect treated nets (ITNs), indoor residual sprays (IRS) and

Intermittent Preventive Treatment for Pregnant Women (IPTp) is the most effective for malaria

prevention and control.

To the best of my knowledge, there is no any study applied the optimal control Theory and

the Incremental Cost-Effectiveness Ratio (ICER) to study the dynamics and control of ND by

considering the local poultry farming. This study is therefore design and analyze a mathemat-

ical model to study the transmission dynamics and the control of ND among the local poultry

farming. The economical burden of the ND at the household level is also studied.
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CHAPTER THREE

MATERIALS AND METHODS

In this section, a basic model of ND transmission is formulated based on the idea that wild

birds and the environment are primary reservoirs of NDV (Alexander et al., 2004; Gilchrist,

2005; Nwanta et al., 2008; Martin and row, 1992; Lawal et al., 2015). A system of ODEs was

considered to represent the parameters and change of state variables in the non-linear determin-

istic mathematical model. The model is formulated and analysed qualitatively and numerically.

The basic model is then extended by incorporating vaccination, culling and the environmen-

tal hygiene and sanitation control strategies. The purpose is to study the dynamics of ND and

investigating the impact of the controls for reducing its transmission.

3.1 The Basic Model of Newcastle Disease

The village chicken population Nc (t) is divided into three subpopulations namely: Sc (t) that

represents a number of susceptible village chicken, Ec (t) that represents a number of exposed

chicken in the population, Ic (t) that represents number of village chicken in the population

which is severe infected from the infection. The total population size of village chicken is

denoted by Nc (t) = Sc (t) + Ec (t) + Ic (t).

The wild birds population Nb (t) is divided into four sub-populations as follows: Sb (t) are

susceptible wild birds; Eb (t) are exposed population of wild birds; Ib (t) the severe infected

wild birds population and Ir (t) are the mild infected wild birds population. The total population

size of wild birds is therefore denoted by Nb (t) with Nb (t) = Sb (t) + Eb (t) + Ib (t) + Ir (t)

and the environment has only one compartment denoted by H (t).

The village chicken population is recruited by the density dependent recruitment rate �Nc

through birth. Initially, village chicken acquires NDV when a sick village chicken is intro-

duced in a �ock or environment and come into contact with other un-affected chicken. Village

chicken can also acquire NDV when exposed into unhygienic environment as well as when in-

teracting with other mild infected wild birds (Lawal et al., 2015; Daut et al., 2016). Village
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chicken spread the NDV after developing the clinical signs within the incubation period of two

to �fteen days (Perry et al., 1999; Alexander et al., 2004; Sharif et al., 2014). Chicken acquire

infections at a rate �c (Ic; Ir; H) which is de�ned by:

�c (Ic; Ir; H) =
�
 
Ic
Nc

+ b
Ir
Nb

+ d
H

�+H

�
Sc (19)

where  is the transmission coef�cient between the infected village chicken and susceptible

population of the village chicken, b is the transmission coef�cient between the mild population

of wild birds and the susceptible village chicken, d is the coef�cient transmission constant rate

of NDV with the hosts when come into contact with the unhygienic environment. The parameter

kappa is the saturation constant rate of NDV in the environment. The ratio

d
H(t)

�+H(t)
(20)

is the density of NDV in the environment which gives the great chance for the disease outbreak

(Martin and row, 1992; Nwanta et al., 2008). After few days, chicken starts to show aerosol

signs and progress to chronic stage of the disease at the rate 
Ec(t). We assume that village

chicken cannot recover from disease but they die naturally at a rate � and by the disease induced

death rate �c.

Wild birds are assumed to be recruited by the density dependent recruitment rate �Nb through

birth and migrations. Like the village chicken, the susceptible wild birds gets NDV from the

contaminated environment as well as when interacts with the severe infected and mild infected

wild birds population at the rate �b (Ib; Ir; H) de�ned by:

�b (Ib; Ir; H) =
�
’Ib + aIr

Nb
+ d

H
�+H

�
Sb (21)

where ’ is the transmission coef�cient between the chronically infected population of wild birds

and the susceptible wild birds and a is the transmission coef�cient between the mild infected

wild birds and the susceptible wild birds. Wild birds are resistant to the ND which makes them

to be carries of the virus (Awan et al., 1994; Brown and Bevins, 2017). Therefore the progress

of the ND in the wild birds leads to two infected subpopulations; severe infected, Ib(t) and the

mild population, Ir(t) at the proportions of � and 1 � � respectively. It is assumed that wild

birds cannot recover from the disease once affected but they are reduced by natural death � and
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others by the disease induced death at the rate �b. NDV are introduced in the environment by

the severe infected village chicken, severe infected wild birds and the mild infected wild birds

through shedding at the rate �c and �b respectively (Awan et al., 1994; Nwanta et al., 2008).

The NDV can survive for some months at a temperature between 20 � 300C and much longer

at cooler physical environments (Martin and row, 1992). The model is formulated with the

following assumptions;

(i) The contaminated environment with NDV, the Infected Village chickens and the wild

birds reservoirs are the primary sources of the NDV infections to the village chicken

(Nwanta et al., 2008; Lawal et al., 2015; Brown and Bevins, 2017).

(ii) The environment is considered to carry only active viruses (Mesogenic, Lentogenic and

the velogenic) during the outbreak of the ND.

(iii) Wild birds are reservoir of the ND strains and can be maintained for a long period.

(iii) Susceptible population of village chicken can get NDV by either through direct contact

with an infected Village chicken or from mild and severe infected wild birds and the

environment (forage and water).

(iv) Neither age structure nor vertical transmission is considered in building the model.

(v) severe infected wild birds, the mild infected wild birds and the infected village chicken

contaminate the environment through shading of the NDV (Awan et al., 1994; Nwanta

et al., 2008).

(vi) Both village chicken and wild birds cannot recover from the ND once infected.

(vii) All avians have the same shedding rate of virus into the environment.

The parameters and the model state variables used in the formulation of the ND model are

summarized in tables below:
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Table 1: Descriptions of the Model State Variables used in the formulation of the Model

Variable Description

Sc(t) Susceptible village chicken population

Ec(t) Exposed village chicken population

Ic(t) Infected village chicken population

Sb(t) Susceptible wild birds population

Eb(t) Exposed wild birds population

Ib(t) Severely infected wild birds population

Ir(t) Mildly infected wild birds population

H(t) NDV population in the surroundings

Nc(t), Total population of village chicken

Nb(t) Total population of wild birds
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Table 2: Descriptions of Parameters used in the formulation of the Model

Parameter Description

a Transmission coef�cient between the mild population of wild birds and

the susceptible population of wild birds

b Transmission coef�cient between between mild population of wild birds

and the susceptible population of the village chicken

 Transmission coef�cient between the severe infected and the susceptible

population of village chicken

� Half saturation constant of NDV in the environment

d Contact rate between susceptible populations of village chicken and wild

birds with the environment

� Proportion of the exposed wild birds which become chronically infected

with NDV

�b Shading rate of NDV in the environment by chronically infected

and the carrier wild birds

�c Shading rate of NDV in the environment by the chronically infected

village chicken

�c Force of infection among the village chicken population

�b Force of infection among the wild birds population

’ A transmission coef�cient between severely infected and the susceptible wild

birds population

� Natural mortality death of the host populations

�v Clearance rate of the NDV from the environment

�b Disease induced death rate in wild birds populations

�c Disease induced death rate in the village chicken population


 Progression rate of the disease in the host populations
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3.1.1 Model Flow Diagram

Based on the Transmission Dynamics of the ND, Model assumptions, de�nition of variables

and parameters respectively, the dynamics of the ND is summarized in the �ow diagram as

follows:

Figure 3: Compartment model diagram for the Transmission Dynamics of Newcastle disease in village

chicken population. The sold lines show the constant transmission from one compartment to

another, the dotted lines show the normal interactions between different compartments and a

dash dot lines represent the shedding of NDV onto the environment

.
3.1.2 Equations of the Model

Now using model assumptions discussed before, the dynamics of ND is described by the fol-

lowing systems of nonlinear differential equations:

Chicken

dSc(t)
dt

= �Nc(t)�
�
 
Ic(t)
Nc(t)

+ b
Ir(t)
Nb(t)

+
dH(t)
�+H(t)

+ �
�
Sc(t) (22a)

dEc(t)
dt

=
�
 
Ic(t)
Nc(t)

+ b
Ir(t)
Nb(t)

+
dH(t)
�+H(t)

�
Sc(t)� (�+ 
)Ec(t) (22b)

dIc(t)
dt

= 
Ec(t)� (�c + �)Ic(t) (22c)
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Wild birds

dSb(t)
dt

= �Nb(t)�
�
’Ib(t) + aIr(t)

Nb(t)
+

dH(t)
�+H(t)

+ �
�
Sb(t) (23a)

dEb(t)
dt

=
�
’Ib(t) + aIr(t)

Nb(t)
+

dH(t)
�+H(t)

�
Sb(t)� (�+ �
)Eb(t) (23b)

dIb(t)
dt

= �
Eb(t)� (�b + �)Ib(t) (23c)

dIr(t)
dt

= (1� �)
Eb(t)� �Ir(t) (23d)

Environment
dH(t)
dt

= �cIc(t) + �b (Ib(t) + Ir(t))� �vH(t) (24)

With initial conditions,

Sc(0) > 0, Ec(0) � 0; Ic(0) � 0, Sb(0) > 0, Eb(0) � 0, Ib(0) � 0, Ir(0) � 0, H(0) � 0.

The susceptible populations of the hosts Sc and Sb are positive they and cannot be zero at any

how, but other infected populations can either be zero or greater than zero depending on the

disease status in the population. They are zero if the the population is free from the disease and

greater than zero if disease persists in the population.

The total population sizes of village chicken and the wild bird are given by

Nc(t) = Sc(t) + Ec(t) + Ic(t) and Nb(t) = Sb(t) + Eb(t) + Ir(t) + Ib(t) respectively.

3.2 Basic Properties of the Model

3.2.1 Invariant Region of the Solution

The ND model system (22a)�(24) has three subpopulations where all parameters and variables

are positive 8t � 0.

Lemma 3.1

Given the model system (22a) � (24) in R8
+ with the initial conditions Sc(0) > 0, Ec(0) �

0; Ic(0) � 0, Sb(0) > 0, Eb(0) � 0, Ib(0) � 0, Ir(0) � 0, H(0) � 0, its solution enters the
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invariant region D = D1 [ D2 [ D3 = R3
+ � R4

+ � R1
+ where;

D1 =
�

(Sc(t); Ec(t); Ic(t)) 2 R3
+ : Sc(t) + Ec(t) + Ic(t) = Nc

	

D2 =
�

(Sb(t); Eb(t); Ib(t); Ir(t)) 2 R4
+ : Sb(t) + Eb(t) + Ib(t) + Ir(t) = Nb

	

D3 =
�
H(t) 2 R1

+
	

(25)

Proof : to establish the feasible region of the ND model solution, we apply the box invariant

method as used in (Abate et al., 2009; Mpeshe et al., 2014b; Kahuru et al., 2017a). For our dy-

namical system _X = G (X; t) ; X 2 Rn, we assume the continuity and the Lipschitz properties

of its solution. The model system (22a)� (24) is reduced to the form

dX
dt

= Q (x)X +G (26)

where X = (Sc; Ec; Ic; Sb; Eb; Ib; Ir; H)T and a column vector G = (Nc; 0; 0; Nb; 0; 0; 0; 0)T .

Q (x) =

0

B
B
B
@

Q1 (x) 0 0

0 Q2 (x) 0

0 0 Q3 (x)

1

C
C
C
A

(27)

is a Metzler matrix for all X 2 R8
+ with sub-matrix Q1 (x) , Q2 (x) and Q3 (x) from the village

chicken, wild birds and environment respectively. We de�ne the sub matrices from the system

(27) as follows:

Q1 (x) =

0

B
B
B
@

� (�c(t; Ic; Ir; H) + �) 0  
Nc

�c(t; Ic; Ir; H) �(
 + �) 0

0 
 �(�c + �)

1

C
C
C
A

(28)

Q2 (x) =

0

B
B
B
B
B
B
@

� (�b(t; Ib; Ir; H) + �) 0 0 b
Nb

�b(t; Ib; Ir; H) �(
 + �) 0 a
Nb

0 �
 �(�b + �) 0

0 (1� �)
 0 ��

1

C
C
C
C
C
C
A

(29)

Q3 (x) =
�

0 0 �c 0 0 �b �b ��v
�

(30)
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By combining the matrices in equation (28) , (29) and (30), we get the matrix Q (x) which is a

Metzler matrix for all X 2 R8
+ de�ned as:

Q (x) =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�A1 0  
Nc

0 0 0 0 0

A2 �(
 + �) 0 0 0 0 0 0

0 
 �(�c + �) 0 0 0 0 0

0 0 0 �A3 0 0 b
Nb

0

0 0 0 A4 �(
 + �) 0 a
Nb

0

0 0 0 0 �
 �(�b + �) 0 0

0 0 0 0 (1� �)
 0 �� 0

0 0 �c 0 0 �b �b ��v

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(31)

where

A1 = �c(t; Ic; Ir; H) + �; A2 = �c(t; Ic; Ir; H); A3 = �b(t; Ib; Ir; H) + �

A4 = �b(t; Ib; Ir; H)

A reduced Metzler matrix Q (x) in (31) has all negative values along its principle diagonal and

the rest non-negative values in its off diagonal. Hence proves that all variables enter and remain

in the invariant region D. This shows that the ND model system (22a)� (24) is epidemiologi-

cally meaningful and well posed in the invariant region D.

3.2.2 Positivity of the Solution

Theorem 3.2

Let the initial set of variables of the model in the equation (22a)�(24) be Sc(0) > 0,Ec(0) � 0,

Ic(0) � 0, Sb(0) > 0, Eb(0) � 0, Ir(0) � 0, Ib(0) � 0 and H(0) � 0 then the solution set

f(Sc(t) > 0; Ec(t) � 0; Ic(t) � 0; Sb(t) > 0; Eb(t) � 0; Ir(t) � 0; Ib(t) � 0; H(t) � 0g 2 R8
+

is positive for all t.

Proof:

Lets consider the equation (22a) of the model system (22a)� (24)

dSc(t)
dt

= �Nc � �1(t; Ic; Ir; H)Sc(t)� �Sc(t) (32)
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dSc(t)
dt

� � (�1(t; Ic; Ir; H) + �)Sc(t) (33)
Z t

0

dSc(t)
Sc(t)

� �
Z t

0
(�1(t; Ic; Ir; H) + �) dt (34)

Sc(t) � Sc(0)e� �t�
Rt

0 (�1(t;Ic ;Ir ;H)dt (35)

Thus as t ! 1 then it follows that Sc(t) � Sc(0)e� �t�
Rt

0 (�1(t;Ic ;Ir ;H)dt � 0. From equation

(22b) of the model system (22a)� (24), we have

dEc(t)
dt

= �c(t; Ic; Ir; H)Sc(t)� (
 + �)Ec (t) (36)

dEc(t)
dt

� �(
 + �)Ec(t) (37)

dEc(t)
Ec(t)

� �(
 + �)dt (38)

Integrating both sides of equation (38) with respect to time we then have
Z t

0

dEc(t)
Ec(t)

� �
Z t

0
(
 + �)dt (39)

and �nally we get

Ec(t) � Ec(0)e� (
+�)t (40)

As t!1, Ec(t) � Ec(0)e� (�+
)t � 0 , we have Ec(t) � 0

Also from equation (22c) of the model system (22a)� (24) we have

dIc(t)
dt

= 
Ec(t)� (�c + �)Ic(t) (41)

Z t

0

dIc(t)
Ic
� �

Z t

0
(�c + �)dt (42)

which gives Ic(t) � Ic(0)e� (�c+�)t � 0. Following the same procedures it follow that; Sb(t) �

0, Eb(t) � 0, Ib(t) � 0, Ir(t) � 0 and H(t) � 0 which proves that all state variables are

positive 8t.

3.2.3 Existence of the Steady States

The disease is endemic whenever persists in a population and the population is free iff

no disease persists in it (Mwanga et al., 2014; Selemani et al., 2016). The steady state
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�� (S �
c ; E �

c ; I �
c ; S �

b ; E �
b ; I �

b ; I �
r ; H � ) of the model system in equation (22a) � (24) is obtained

by setting the model system to zero and thus solving for the state variables. Therefore, we have

the following system:

�Nc �
�
 
Ic(t)
Nc

+ b
Ir(t)
Nb

+
dH(t)
�+H(t)

+ �
�
Sc(t) = 0

�
 
Ic(t)
Nc

+ b
Ir(t)
Nb

+
dH(t)
�+H(t)

�
Sc(t)� (�+ 
)Ec(t) = 0


Ec(t)� (�c + �)Ic(t) = 0

(43)

�cIc(t) + �b (Ib(t) + Ir(t))� �vH(t) = 0 (44)

�Nb �
�
’Ib(t) + aIr(t)

Nb
+

dH(t)
�+H(t)

+ �
�
Sb(t) = 0

�
’Ib(t) + aIr(t)

Nb
+

dH(t)
�+H(t)

�
Sb(t)� (
 + �)Eb(t) = 0

�
Eb(t)� (�b + �)Ib(t) = 0

(1� �)
Eb(t)� �Ir(t) = 0

(45)

Compartment wise, we have the following steady states in village chicken population:

I �
c =



�c + �

E �
c ; E

�
c =

�cS �
c

�+ 

; S �

c =
�N �

c

�c + �
(46)

Substituting S �
c into E �

c and E �
c into I �

c we get

E �
c =

�c�N �
c

(�+ 
) (�c + �)
(47)

I �
c =



(�1 + �)

�c�N �
c

(�+ 
) (�c + �)
(48)

By considering the force of infections in chicken, Ic is obtained by solving the equation

B2I �
c + B1I �

c + B0 = 0 (49)

where:

B2 = �Nc (�c + �) (�+ 
) (�+H)

B1 = NbNc (�+H) + bNc (�c + �) (�+ 
) (�+H) Ir + �NbNc (�+H) (�c + �) (�+ 
)

B0 = b�
N2
c (�+H) Ir + d�
NbN2

c (1�R0)
(50)
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N �
c = S �

c + E �
c + I �

c =
�

1 +Rbch

�
1 +

�1�N �
c

(�+ 
) (�c + �)

��
S �
c (51)

where �c =
�
 I �

c (t)
N �

c
+ b I

�
r (t)
N �

b
+ dH � (t)

�+H � (t)

�
, andRbch = �c�N �

c
(�+
)(�1+�)

and

I �
c =
�B1 �

p
B2

1 � 4B2B0

2B0
(52)

Also in the wild birds population we have the following steady states:

S �
b (t) =

�N �
b

�b + �
; E �

b (t) =
�
�bS �

b

�+ 


�
(53)

I �
b =

�
��bN �
b

(�b + �) (�+ 
) (�b + �)
(54)

I �
r (t) =

�
(1� �) 
��bN �

b

� (�+ 
) (�b + �)

�
(55)

N �
b = S �

b + E �
b + I �

b + I �
r =

�
1 +Rbch

�
1 +


�
�

+

�

�b + �

��
S �
b (56)

Where �b =
�
’I �

b (t)+aI �
r (t)

N �
b

+ dH � (t)
�+H � (t)

�
and Rcbh = �b�N �

b �
(�+
)(�b+�)

H � (t) =
�c
��cN �

c

�v (�+ 
) (�c + �)
+
�b
�v

�
�
��bN �

b

(�+ 
) (�b + �)

�
�

�b + �
�

1
�

��
+


�bN �
b

(�+ 
) (�b + �)
(57)

From all these state variables, the solution �c 6= 0 and �b 6= 0 gives the endemic equilibrium

points while �c = 0 and �b = 0 gives the disease free equilibrium point.

3.2.4 Existence of Disease Free Equilibrium Point

The model has a disease free equilibrium point (DFEP) which is obtained when all forces of

infections in the steady states are set to zero i:e, �c (Ic; Ir; H) = �b (Ib; Ir; H) = 0. Therefore

the disease free equilibrium point in their respective compartments are �0
c = fNc; 0; 0g, �0

b =

fNb; 0; 0; 0g and �0
H = 0 for village chicken,wild birds and the concentration of NDV in the the

environment respectively. Generally, the disease free equilibrium point of a model is given by

�0 = fNc; 0; 0; Nb; 0; 0; 0; 0g where Nc and Nb represent the population size of village chicken

and wild birds respectively.
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3.2.5 Existence of Endemic Equilibrium Point

From the stead states in equation (46) to (57), the endemic equilibrium

D� = (S �
c ; E �

c ; I �
c ; S �

b ; E �
b ; I �

b ; Irr ; H � ) is found iff the force of infections are not equal to zero i:e

�c (Ic; Ir; H) 6= 0 and �b (Ib; Ir; H) 6= 0. Therefore, the endemic equilibrium point D� is a

set of the steady states in a condition that E �
c 6= 0, I �

c 6= 0, E �
b 6= 0, I �

b 6= 0, I �
r 6= 0 and H � 6= 0.

3.2.6 Bifurcation Analysis for the Equilibrium Points

The existence of forward or backward bifurcation has an important implications on the epidemi-

ological control measure of the infectious diseases. The bifurcation analysis of the equilibrium

points tells the nature of the points and also tells whether the disease can be completely reduced

or remain in the population. Therefore, in this part we use the centre manifold theorem as stated

by Castillo-Chavez and Song (2004), Buonomo and Vargas-De-Le·on (2013), Nyerere et al.

(2014) and Mushayabasa et al. (2017) to investigate the changes of signs of the equilibrium

points aroundR0 close to one.

Theorem 3.3

Castillo-Chavez and Song (2004), Consider the following general system of ordinary differen-

tial equations with a parameter  

dx
dt

= g (x;  ) ; g : Rn � R! Rn and g 2 Cn(Rn � R) (58)

it is assumed that  is an equilibrium for system (58) for all values of the parameter  ,

(that is g(0;  ) � 0) . Now, suppose that:

(i) M = Dxg (0; 0) = @gi
@x j

(0; 0) is the linearized matrix of the system in (58) around the

equilibrium 0 and  evaluated at 0. Zero is a simple eigenvalue of M and all other

eigenvalues of M have negative real parts:

(ii) Matrix M has a non-negative right eigenvector ! and a left eigenvector v corresponding

to the zero eigenvalue. Let gk be the kth component of g and
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S =
nX

k;i;j=1

vk!i!j
@2gk
@xi@xj

(0; 0) ;

T =
nX

i;k=1

vk!i
@2gk
@xi@ 

(0; 0)
(59)

the local dynamics of the system (58) around zero are totally determined by the signs of S and

T . If S > 0 and T > 0, then a backward bifurcation occurs at  = 0.

(i) S > 0, T > 0, when  < 0 with j j << 0, is locally asymptotically stable and there

exist a positive unstable equilibrium. When 0 < j j << 1, 0 is unstable and there exists

a negative and a locally asymptotically stable equilibrium.

(ii) S < 0, T < 0, when  < 0 with j j << 0, is unstable. When 0 < j j << 1, 0 is

asymptotically stable and there exists a positive unstable equilibrium.

(iii) S > 0, T < 0, when  < 0 with j j << 0, is unstable. When j j << 1, 0 is unstable

and there exists a locally asymptotically unstable equilibrium.

(iv) S < 0, T > 0, when  < 0 changes sign from negative to positive, 0 changes its sta-

bility from stable to unstable. The corresponding negative unstable equilibrium becomes

positive and locally asymptotically stable.

Now, to apply the above theorem, the change of variables are made on the model system (22a) to

(24) by letting the variables as follows; Sc = x1, Ec = x2, Ic = x3, Sb = x4, Eb = x5, Ib = x6,

Ir = x7,H = x8. These simpli�cations giveNc = x1+x2+x3 andNb = x4+x5+x6+x7. With

the vector notations x = (x1; x2; x3; x4; x5; x6; x7; x8)T and dx
dt = (g1; g2; g3; g4; g5; g6; g7; g8)T

the system (22a) to (24) is now re-written as;
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dx1(t)
dt

= g1 = � (x1(t) + x2(t) + x3(t))� (�1 + �)x1(t)

dx2(t)
dt

= g2 = �1x1(t)� (�+ 
)x2(t)

dx3(t)
dt

= g3 = 
x2(t)� (�c + �)x3(t)

dx4(t)
dt

= g4 = � (x4(t) + x5(t) + x6(t) + x7(t))� (�+ �2)x4(t)

dx5(t)
dt

= g5 = �2x4(t)� (�+ �
)x5(t)

dx6(t)
dt

= g6 = �
x5(t)� (�b + �)x6(t)

dx7(t)
dt

= g7 = (1� �)
x5(t)� �x7(t)

dx8(t)
dt

= g8 = �cx3(t) + �b (x6(t) + x7(t))� �vx8(t)

(60)

�1 =  x3(t)
x1(t)+x2(t)+x3(t) + b x7(t)

x4(t)+x5(t)+x6(t)+x7(t) + dx8
�+x8(t) , �2 = ’x6(t)+ax7(t)

x4(t)+x5(t)+x6(t)x7(t) + dx8(t)
�+x8(t) ,

x1(t) + x2(t) + x3(t) = 1, x4(t) + x5(t) + x6(t)x7(t) = 1, xi(t) � 0 for i = 1; 2; :::; 8

Lets choose  =  � from the basic reproduction number as the bifurcation parameter. Using

Maple for solving  � fromR0 = 1 we then have

 =  � = �
1
2

� $
�

�
(61)
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$ = ���3� �
 Nb�v + 
2��2Nb�c�v � 
 a��3Nb�v � 
2�Nb�bdN b�b � 
 �2Nb�bdN b�b

� 
2a��2Nb�v + 
2a�Nb�cdN c + 
2aNb�cdN c�b + 
2� ��cbNcdN b � 
2�Nb�bdN b�c

+ 
2��cbNcdN b�b � 
2Nb�bdN b�b�c � 
 �2Nb�bdN b�c � 
 �2Nb�cdN c�b + ��3Nb�b�c�v

+ 2 
 ��3Nb�b�v + 2 
 ��3Nb�c�v � 
2�Nb�cdN c�b + 
2��2Nb�b�v + ��5Nb�v

+ 
 a�� �Nb�b�c�v � ��2� �
 Nb�c�v + 
2��Nb�b�c�v + 2 
 ��2Nb�b�c�v

� 
2a��Nb�c�v � 
2a�Nb�b�c�v � 
2a� �Nb�cdN c � 
2a�Nb�cdN c�b + 
2�Nb�bdN b�b�c

� 
 a��2Nb�c�v + 
 �� �
 Nb�cdN c � 
 �Nb�bdN b�b�c + 
2a��2�Nb�v + 
 a��3�Nb�v

� 
2a��Nb�b�v + 
2� �Nb�bdN b�b � 
 a��2Nb�b�v � 
 ��2� �
 Nb�v + 
 �2�Nb�bdN b�b

+ 
2a�� �Nb�b�v + 
 a��2�Nb�b�v + 
2a�� �Nb�c�v + 
2a� �Nb�b�c�v + 
 a��2�Nb�c�v

� 
 a��Nb�b�c�v � 
 ��� �
 Nb�c�v + 
 � �Nb�bdN b�b�c + ��4Nb�c�v � 
 �3Nb�cdN c

� 
2��cbNcdN b � 
2�cbNcdN b�b + 
2��3Nb�v + 2 
 ��4Nb�v � 
2�2Nb�cdN c

� 
2�2Nb�bdN b � 
 �3Nb�bdN b + ��4Nb�b�v
(62)

� = 

�
�+ ��3�v + ��2�b�v � ��� �
 �v � 
 ��bdN b � 
 �bdN b�b

�
Nb (63)

� = a
 �� ��v + a
 � � �b�v � a
 ���v � a
 � �b�v + 
 ��2�v + 
 �� �b�v + 
 ��bdN b�b
(64)

Then, the linearized system (60) is transformed with  =  � which has a simple zero eigenval-

ues and the centre manifold theory is used to analyze the dynamics of (60) near  =  � . The

Jacobian of the system (60) at  =  � has a right eigenvector associated with zero eigenvalues

given by ! = (!1; !2; :::; !8)T . The eigenvectors of the Jacobian matrix of the system (60) are

obtained as follows:
0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�� 0 � � 0 0 0 �b � d
�

0 �
 � �  � 0 0 0 b d
�

0 
 ��c � � 0 0 0 0 0

0 0 0 �� 0 �’ �a � d
�

0 0 0 0 ��� �
 ’ a d
�

0 0 0 0 
� ��b � � 0 0

0 0 0 0 
 (1� �) 0 �� 0

0 0 �c 0 0 �b �b ��v

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

!1

!2

!3

!4

!5

!6

!7

!8

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

0

0

0

0

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(65)
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This gives the following eigenvectors

!1 = �
�

 + �
�

�
!2;

!2 = �
�

�

 + �

�
!1;

!3 =
(b�!7 � d!8) 


((�+ 
) (�c + �)�  
)
;

!4 =
�
�+ 
�
�

�
!5;

!5 > 0;

!6 =
�

���
 (a�!7 � d!8)
�� (�� (�b + �)� �
� (’� �b � �))

�

!7 =
�

1� �

�

�
!5;

!8 =
�c!3 + �b (!6 + !7)

�v

(66)

Also, the left eigenvector vi = (v1; v2; :::; v8)T associated with the zero Eigenvalues at ’ = ’�

gives following Jacobian matrix:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�� 0 0 0 0 0 0 0

0 �
 � � 
 0 0 0 0 0

� �  � ��c � � 0 0 0 0 �c

0 0 0 �� 0 0 0 0

0 0 0 0 ��� �
 
� (1� �)
 0

0 0 0 �’ ’ ��b � � 0 �b

�b b 0 �a a 0 �� �b

� d
�

d
� 0 � d

�
d
� 0 0 ��v

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

v1

v2

v3

v4

v5

v6

v7

v8

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

0

0

0

0

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(67)

Then from the linear combinations it follows that
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v1 = 0

v3 =
(�c + �) v2




v4 = 0

v6 =
�v5 � 
� (v5 + v7)� 
v7

�


v7 =
bv2 + av5 + �bv8

�

v8 =
(�c + �) v3

�c

(68)

Computations of S and T

From the system (60) the associated non-zero partial derivatives of the function gk at disease

free equilibrium are

@2g1

@x1@x3
= � ;

@2g1

@x1@x7
= �b;

@2g1

@x1@x8
=

@2g4

@x4@x8
= �

d
�

@2g4

@x4@x6
= �’;

@2g4

@x4@x7
= �a

From equation (59) it then follows that

S = v1!1!3
@2g4

@x1@x3
+ v2!1!7

@2g4

@x1@x7
+ v3!1!8

@2g4

@x1@x8
+ v4!4!8

@2g4

@x4@x8

+ v5!4!6
@2g4

@x4@x6
+ v6!4!7

@2g4

@x4@x7

(69)

S = � v1!1!3 � bv2!1!7 �
d
�
v3!1!8 �

d
�
v4!4!8 � ’v5!4!6 � av5!4!7 (70)

S = �!2

�

 + �
�

� �
bv2!7 +

d
�
v3!8

�
� v5!5 (’!6 + a!7)

�
�+ 
�
�

�
< 0 (71)

For the sign of T , it can be shown that the associated non-zero partial derivatives of the function

gi at disease free equilibrium are:

@2g1

@ @x3
= �1;

@2g2

@ @x3
= 1 (72)

which gives

T = v1!1
@2g1

@x3@ 
+ v2!2

@2g2

@x3@ 
(73)
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and therefore

T = �v1!1 + v2!2 (74)

But v1 = 0, then it follows from equation (74) that T = v2!2 > 0. Since S < 0 and T > 0,

regarding to Theorem 3:3 (4), the equilibrium is positive, unique and locally asymptotically

stable. Thus the system undergoes the forward bifurcation withR0 close to one.

Figure 4: The Forward Bifurcation for a ND model in village chicken with environment and wild birds

reservoirs.

The diagram shows the behavior of the disease near the point R0 = 1: For the disease to

disappear from the village chicken population, making R0 < 1 is a necessary condition to

reach the target. So R0 should be kept as low as possible to reduce the spread of ND in the

village chicken population.

Theorem 3.4

The Equilibrium point of the ND model undergoes forward bifurcation and endemic equilibrium

is locally asymptotically stable forR0 > 1 withR0 close to one.
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3.2.7 The Basic Reproductive Number

The basic reproduction numberR0, is de�ned as the average number of secondary cases caused

by one infectious individual introduced in a population that consisting of entirely susceptibles

(Foppa, 2005; Hartemink et al., 2008). This number tells and quanti�es the ability of an infec-

tious disease to invade a purely susceptible population (Foppa, 2005; Hartemink et al., 2008).

The Epidemic persists when R0 > 1 and dies out when the R0 < 1 (Diekmann et al., 2009;

Hethcote, 2000; Van den Driessche and Watmough, 2002; Wang and Modnak, 2011). We com-

pute the R0 by the next generation method as proposed by Van den Driessche and Watmough

(2002). We �rstly de�ne our system for infections in compartments as

dXi

dt
= Fi � Vi (75)

Where:

(i) Xi de�nes a set of infected classes

(ii) Fi de�nes the rate of new infections in compartment i

(iii) Vi = V �
i � V

+
i the total transfer rate

V �
i de�nes the rate of transfer of individuals out of compartment i and V+

i is the rate of transfer

of individuals into compartment i through interactions. Then it follows that;
0

B
B
B
B
B
B
B
B
B
B
B
B
@

dEc
dt

dIc
dt
dEb
dt

dIr
dt
dIb
dt

dH
dt

1

C
C
C
C
C
C
C
C
C
C
C
C
A

= Fi � Vi =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

�
 Ic
Nc

+ b Ir
Nb

+ d H
�+H

�
Sc

0
�
’Ib+aIr
Nb

+ d H
�+H

�
Sb

0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
A

�

0

B
B
B
B
B
B
B
B
B
B
B
B
@

�(
 + �)Ec


Ec � (�c + �)Ic

�(
 + �)Eb

�
Eb � (�b + �)Ib

(1� �)
Eb � �Ir

�cIc + �b (Ib + Ir)� �vH

1

C
C
C
C
C
C
C
C
C
C
C
C
A

The corresponding Jacobian matrices of F and V are the matrices of the derivatives of Fi and

Vi with respect to Ec(t), Ic(t), Eb(t), Ir(t), Ib(t) and H(t) at the disease free equilibrium point,

�0, which are given by
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F =
�
@Fi(�0)
@Xj

�
and V =

�
@Vi(�0)
@Xi

�
respectively.

Then by differentiating the equation Fi and Vi w:r:t the infected classes we get the fol-

lowing matrices

F =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

0  0 0 bNc
Nb

dNc
�

0 0 0 0 0 0

0 0 0 ’ a dNb
�

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(76)

V =

0

B
B
B
B
B
B
B
B
B
B
B
B
@


 + � 0 0 0 0 0

�
 �c + � 0 0 0 0

0 0 (
 + �) 0 0 0

0 0 ��
 (�b + �) 0 0

0 0 �(1� �)
 0 � 0

0 ��c 0 ��b ��b �v

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(77)

The inverse of matrix V in equation (77) become

V � 1 =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

(
 + �)� 1 0 0 0 0 0



(
+�)(�c+�) (�c + �)� 1 0 0 0 0

0 0 (
 + �)� 1 0 0 0

0 0 �

(
+�)(�b+�) (�b + �)� 1 0 0

0 0 � (� 1+�)

(
+�)� 0 �� 1 0


 �c
(
+�)(�c+�)�v

�c
(�c+�)�v

��b(� 
 �b� 
 �+
 � �b)
(
+�)(�b+�)��v

�b
(�b+�)�v

�b
��v

�v � 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(78)

We then compute the next generation matrix FV � 1 by multiplying the matrices of equation

(76) and (78) which gives
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FV � 1 =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

R S T dN c�b
� (�b+�)�v

bN c
Nb�

+ dN c�b
���v

dN c
��v

0 0 0 0 0 0

U V W ’
�b+� + dN b�b

� (�b+�)�v

a
� + dN b�b

���v

dN b
��v

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(79)

where

R =
 


(
 + �) (�c + �)
+

dN c
 �c
� (
 + �) (�c + �)�v

S =
 

�c + �
+

dN c�c
� (�c + �)�v

T =
bNc (1� �) 

Nb (
 + �)�

+
dN c�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

U =
dN b
 �c

� (
 + �) (�c + �)�v
;

V =
dN b�c

� (�c + �)�v

W =
’�


(
 + �) (�b + �)
+
a (1� �) 

(
 + �)�

+
dN b�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

The eigenvalues of the matrix (79) are

�1 = �2 = �3 = �4 = 0

�5 = �1=2
�
R +

’�

(
 + �) (�b + �)

+
a (1� �) 

(
 + �)�

+
dN b�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

�

+ 1=2

s �
R�

’�

(
 + �) (�b + �)

+
a (1� �) 

(
 + �)�

+
dN b�b (�
 �b � 
 �+ 
 � �b)
� (
 + �) (�b + �)��v

� 2

+ 4!

(80)
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�6 =
1
2

�
R +

’�

(
 + �) (�b + �)

+
a (1� �) 

(
 + �)�

+
dN b�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

�

+
1
2

s �
R�

’�

(
 + �) (�b + �)

�
a (1� �) 

(
 + �)�

�
dN b�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

� 2

+ 4!

(81)

Basing on the eigenvalues of the matrix (79), the basic reproductive number R0 is the spectral

radius �(FV � 1) of the next generation matrix (79). This gives the basic reproduction number

as

R0 = �
�
FV � 1�

=
1
2

�
(R +W ) +

p
(R�W )2 + 4UT

�
(82)

R0 =
1
2

�
R +

’�

(
 + �) (�b + �)

+
a (1� �) 

(
 + �)�

+
dN b�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

�

+
1
2

s �
R�

’�

(
 + �) (�b + �)

�
a (1� �) 

(
 + �)�

�
dN b�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

� 2

+ 4!

(83)

for

! =
4 dN b
 �c

� (
 + �) (�c + �)�v

�
bNc (1� �) 

Nb (
 + �)�

+
dN c�b (
 �b + 
 �� 
 � �b)
� (
 + �) (�b + �)��v

�

From the equation (83) the basic reproduction number R0 is in�uenced by parameters from all

subpopulations of the model.

Term Description



(�+�c)

Is the probabilities that village survives in

the presence of ND



(�+�b)

Is the probabilities that wild birds survive in

the presence of ND

 
(�+�c)

is the probability of village chicken to ac-

quire NDV when come into contact

with the infectious village chicken

’
(�+�b)

is the probability of wild birds to acquire

NDV when come into contact with

Continued on next page
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Table 3 � Continued from previous page

Term Description

chronically affected wild bird

d
�(
+�)

The probabilities of village chicken and wild

birds to acquire the NDV

from the environment during the outbreak of

disease.

3.2.8 Local Stability of the Disease Free Equilibrium Point

The stability analysis of the disease free equilibrium point (�0) of the model system (22a) to

(24) is examined by the Hurwitz Matrix criterion (Fallat and Johnson, 2011; Dyachenko, 2014).

From the Jacobian matrix J (�0) is found by differentiating each equation of the model system

with respect to its state variables at �0. Thus, the Jacobian matrix of the model system at �0 is

then given by

J (�0) =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

�� 0 � 0 0 0 �bNc
Nb
�dNc

Nb

0 ��� 
  0 0 0 bNc
Nb

dNc
Nb

0 
 ��c � � 0 0 0 0 0

0 0 0 �� 0 �’ �a �dNb
�

0 0 0 0 ��� 
 ’ a dNb
�

0 0 0 0 �
 ��b � � 0 0

0 0 0 0 (1� �)
 0 �� 0

0 0 �c 0 0 �b �b ��v

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(84)
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From matrix (84) the �rst two roots of J (�0) are given by (�u � �)(�u � �) = 0. Then the

reduced 6� 6 matrix become:

� =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

��� 
  0 0 bNc
Nb

dNc
Nb


 ��c � � 0 0 0 0

0 0 ��� 
 ’ aNb
� dNb

�

0 0 �
 ��b � � 0 0

0 0 (1� �)
 0 �� 0

0 �c 0 �b �b ��v

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(85)

Then characteristic polynomial for the matrix � is

G (�) = �6 + a1�5 + a2�4 + a3�3 + a4�2 + a5�+ a6 (86)

The corresponding Hurwitz matrix is

G6 =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

a1 a3 a5 0 0 0

1 a2 a4 a6 0 0

0 a1 a3 a5 0 0

0 1 a2 a4 a6 0

0 0 a1 a3 a5 0

0 0 1 a2 a4 a6

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(87)

where

a1 = �v + 3�+ ’+ �c + 


a2 = 
 � t+ �v 
 + 3�v �� �v ’+ �v �c + a�+ a�b + 2 
 �� 
 ’� 
  � 
 t+ 
 �c + 3�2

� 3’�+ 2 �c �� ’ �c

a3 = �v 
 � t+ 
2� t+ 2 
 � � t+ 
 � t�c + �v a�+ �v a�b + 2�v 
 �� �v 
 ’� �v 
  � �v 
 t

+ �v 
 �c + 3�v �2 � 3�v �’+ 2�v � �c � �v ’ �c + 
 a�+ a
 �b + 3 a�2 + 3 a� �b

+ a� �c + a�b �c � 
2t+ 
 �2 � 2 
 �’� 
 � � 2 
 � t+ 
 � �c + 
 ’ � 
 ’ �c � 
 s�c

� 
 t�c + �3 � 3�2’+ �2�c � 2�’ �c
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a4 = �v 
2� t+ 2�v 
 � � t+ �v 
 � t�c � 
3r�� 
2� r�+ 
2� � t� 
2 � t� 
2� s�b

+ 
2� t�c + 
 �2� t+ 
 � � t�c + �v 
 a�+ �v a
 �b + 3�v a�2 + 3�v a� �b

+ �v a� �c + �v a�b �c � �v 
2t+ �v 
 �2 � 2�v 
 �’� �v 
 � � 2�v 
 � t+ �v 
 � �c

+ �v 
 ’ � �v 
 ’ �c � �v 
 t�c + �v �3 � 3�v �2’+ �v �2�c � 2�v �’ �c + 2 
 a�2

� a
 � + 2 a
 � �b + a
 � �c � a
  �b + a
 �b �c + 3 a�3 + 3 a�2�b + 2 a�2�c

+ 2 a� �b �c + 
3r + 
2� r � 
2� t+ 
2 t� 
2t�c � 
 �2’� 
 �2t+ 
 �’ � 
 �� �c

� 
 � s�c � 
 � t�c + 
 � s�c � �3’� �2’ �c

a5 = 2�v a� �b �c + 
2’� s�b + 
 �� s�c � �v 
2� r�+ �v 
2� � t� �v 
2 � t+ �v 
2� t�c

+ �v 
 �2� t� �v 
 a� + 2�v 
 a� �b + �v 
 a� �c � �v 
 a �b + �v 
 a�b �c

+ �v 
 �’ � �v 
 �’ �c � �v 
 � t�c � 
2� st�c � 
 a� s�c � 
 as�c �b � 2 
2� � s�b

� 
 � s�b �b � a
 � �b + a
 � �b �c + �v 
 � � t�c + 3�v a�3 � �v �3’+ �v 
3r + 
3s�b

+ a
 �3 + a�3�b + a�3�c + a�4 � 
2s�b �b � 
 �2s�b + a
3r�2 � a
3r�� a
 �2 + a
 �2�b

+ a
 �2�c + 3�v a�2�b + 2�v a�2�c � �v �2’ �c � 
3� s�b � �v 
3r�+ �v 
2� r

� �v 
2� t+ �v 
2 t� �v 
2t�c + 2�v 
 a�2 � �v 
 �2’� �v 
 �2t+ 
2st�c + a�2�b �c

a6 = �v a�2�b �c � 
3�2st�b + 
3� st�b � 
 a�2s�c + �v 
3ar�2 � �v 
3ar�� �v 
 a�2 

+ �v 
 a�2�b + �v 
 a�2�c � 
 a� s�c �b � �v 
 a� �b + �v 
 a� �b �c + 
2�’; � s�b + �v a�4

+ �v a�3�b + �v a�3�c + �v 
 a�3 � �b 
2�2s� �b 
 �3s� �b 
2� s�b � �b 
 �2s�b

+ 
3a�2s�b � 
3a� s�b

46



The disease free equilibrium point is locally asymptotically stable iff the principal leading mi-

nors of Gn are all positive for n = 1; 2; ::; 6. Thus

�G1 = a1 = �v + 3�+ �+ �c + 
 > 0

�G2 =

�
�
�
�
�
�

a1 a3

1 a2

�
�
�
�
�
�

= a1a2 � a3

�G3 =

�
�
�
�
�
�
�
�
�

a1 a3 a5

1 a2 a4

0 a1 a3

�
�
�
�
�
�
�
�
�

= a1a2a3 � a2
1a4 � a2

3 + a1a5

�G4 =

�
�
�
�
�
�
�
�
�
�
�
�

a1 a3 a5 0

1 a2 a4 a6

0 a1 a3 a5

0 1 a2 a4

�
�
�
�
�
�
�
�
�
�
�
�

= a1a2 (a3a4 � a2a4 + a5) + a3
�
a2

2 � a3
�

� a3 (a3a4 � a2a5 + a1a4) + a2
5

�G5 =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

a1 a3 a5 0 0

1 a2 a4 a6 0

0 a1 a3 a5 0

0 1 a2 a4 a6

0 0 a1 a3 a5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

= a1a2a3 (a4a5 � a3a6)� a1a2a5 (a2a5 � a1a6)

� a1a4 (a4a5 � a3a6) + a4a2
5 + a1a6 (a2a5 � a1a6 � a3a6) + a2

5
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�G6 =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

a1 a3 a5 0 0 0

1 a2 a4 a6 0 0

0 a1 a3 a5 0 0

0 1 a2 a4 a6 0

0 0 a1 a3 a5 0

0 0 1 a2 a4 a6

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

= a1a2a3a4a5a6 � a3
1a

3
6 + a2

6a
3
3 � a6a3

5 + 2a6a1a4a2
5

� a2
4a

2
1a6a5 � 3a2

6a1a5a3 + 2a2
6a

2
1a5a2 � a4a2

3a5a6 + a4a3a2
6a

2
1 + a3a2a6a2

5 � a6a1a2
2a

2
5

� a2a1a2
6a

2
3

Therefore the disease free equilibrium point (�0) of a model system (84) is LAS only if

�G1, �G2, ..., �G6 > 0. For �G1 > 0. We have �v + 3� + �c + 
 + � > 0, �G2 > 0 if

a1a2 > a3, �G3 > 0 if a1a2a3 + a1a5 > a2
1a4 + a2

3. Also �G4, �G5 and �G6 are

grater than zero when a1a2a3a4 +a1a2a5 +a3a2
2 +a1a2a4 +a2

5 > a1a2
2a4 +a2

3 +a2
3a4 +a1a3a4;

a1a2a3a4a5+a2
1a2a5a6+a1a3a4a6+a4a2

5+a1a2a5a6+a2
5 > a1a2

2a2
3a6+a1a2

2a2
5+a1a2

4a5+a1a2
6+

a1a3a2
6 and a1a2a3a4a5a6 +a2

6a3
3 +2a6a1a4a2

5 +2a2
6a2

1a5a2 +a4a3a2
6a2

1 +a3a2a6a2
5 +a3

1a3
6 >

a6a3
5 + a2

4a2
1a6a5 + 3a2

6a1a5a3 + a4a2
3a5a6 � a6a1a2

2a2
5 + a2a1a2

6a2
3 respectively. We therefore

establish a theorem:

Theorem 3.5

G(�) is stable if and only if the leading principal minors of Gn (for n 2 R+) are all positive

and thus the disease free equilibrium point is LAS.

3.2.9 Global Stability of the Disease Free Equilibrium Point

The global stability of the disease free equilibrium point of the Newcastle model is done by the

theorem as described by Castillo-Chavez et al. (2002), Mafuta et al. (2013) and Mwanga et al.

(2014). To apply the theorem, we write the model system (22a) to (24) as:

dX (t)
dt

= F (X; I)

dI (t)
dt

= G (X; I) ; G (X; 0) = 0
(88)
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where X is the number of susceptible populations and I is the number of the infected popula-

tions whilst the disease free equilibrium point is given given by �0 = fx� ; 0g. For the system

(88) to be GAS, two conditions must be ful�lled:

(i) dX(t)
dt = F (X; 0), X � is globally asymptotically stable (GAS)

(ii) G (X; I) = BI � bG (X; I), Ĝ (X; I) � 0 for (X; I) 2 D,

where D is the invariant region and B = DrG (X � ; 0) is an M -matrix with non-negative off

diagonal elements. If the system (88) satis�es condition (i) and (ii) above then the theorem

below holds:

Theorem 3.6

A disease free equilibrium point (�0) of a model is globally asymptotically stable if and only if

R0 < 1 (LAS) and that condition (i) and (ii) holds.

Proof:

We need to show that condition I and II holds when R0 < 1. From the model system in

equation (22a) to (24); the set of non-infectious classes is given by X = (Sc; Sb) 2 R2 and for

the infectious classes is given by I = (Ec; Ic; Eb; Ib; Ir; H) 2 R6. The model system (22a) to

(24) is then transfered into the form of the system (88) as follows:

dX (t)
dt

= F (X; 0) =

0

B
B
B
@

�Nc (t)� �Sc (t)

�Nb (t)� �Sb (t)

0

1

C
C
C
A

(89)

with �0 = fNc (t) ; 0; 0; Nb (t) ; 0; 0; 0; 0g. The system (89) is linear with the solutions

Sc(t) = Nc (t) + (S(0)�Nc (t))e� �t and Sb(t) = Nb (t) + (Sb(0)�Nb (t))e� �t. It is obvious

that Sc(t)! Nc (t) and Sb(t)! Nb (t) as t!1 depending on the value of initial conditions.
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Thus, �0 is globally asymptotically stable and therefore condition I holds. At the meantime

dI (t)
dt

= G(X; I) =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

�
 Ic(t)

Nc
(t) + b Ir (t)

Nb
(t) + dH(t)

�+H(t)

�
Sc(t)� (�+ 
)Ec(t)


Ec(t)� (�c + �)Ic(t)�
’Ib(t)+aIr (t)

Nb
+ dH(t)

�+H(t)

�
Sb(t)� (
 + �)Eb(t)

�
Eb(t)� (�b + �)Ib(t)

(1� �)
Eb(t)� �Ir(t)

�cIc(t) + �b (Ib(t) + Ir(t))� �vH(t)

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(90)

We need to show that G (X; I) = BI � bG (X; I), G (X; 0) � 0 for (X; I) 2 D. The Jacobian

matrix of equation (90) at �0 produce an M-matrix B as follows:

B =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

�(�+ 
)  0 0 bNc
Nb

dNc
�


 �(�c + �) 0 0 0 0

0 0 �(
 + �) ’ a dNb
�

0 0 �
 �(�b + �) 0 0

0 0 (1� �)
 0 �� 0

0 �c 0 �b �b ��v

1

C
C
C
C
C
C
C
C
C
C
C
C
A

(91)

and 8
>>>>>>>>>>>><

>>>>>>>>>>>>:

bG1(X; I)
bG2(X; I)
bG3(X; I)
bG4(X; I)
bG5(X; I)
bG6(X; I)

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

 Ic
�

1� Sc
Nc

�

0

’Ib
�

1� Sb
Nb

�
+ aIr

�
1� Sb

Nb

�

0

0

0

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(92)

From the equation (91), a matrix B comprises with all negative diagonal entries and all non-

negative off-diagonal entries. Also, by examining equation (92) we �nd that bG1(X; I) > 0

and bG3(X; I) > 0 whilst bG2(X; I)= bG4(X; I)= bG5(X; I)= bG6(X; I) = 0. At the disease free

equilibrium point bGi(X; 0) = 0 for (i = 1; 2; :::6). Since Nc (t) = Sc (t) + Ec (t) + Ic (t)

and Nb (t) = Sb (t) + Eb (t) + Ib (t) + Ir (t), it is almost surely that Sc(0) � Nc (t) and

Sb(0) � Nb (t) for f(Sc(t); Sb(t)g 2 D. Therefore condition II holds which shows that the

disease free equilibrium point �0 is GAS forR0 < 1 and hence the theorem (54) holds.

50



3.2.10 Stability Analysis of Endemic Equilibrium Point

The global stability of the endemic equilibrium point (EEP ) of the model is explored by using

the Lyapunov method and the LaSalle’s Invariant principle. To prove the global stability of

point �� , lets consider a continuous and differentiable Lyapunov function de�ned as:

P (t) =
8X

n=1

Ti (t) (yi � y�
i ln yi) ; Ti > 0 (93)

where Ti (t) is a Lyapunov factor, yi a population variable at compartment i and y�
i is the equi-

librium point of the model at compartment i for i = (1; 2; ::; 8); where y = y1; y2; :::y8g with

y1 = Sc, y2 = Ec, y3 = Ic, y4 = Sb, y5 = Eb, y6 = Ib, y7 = Ir, y8 = H . From equation (93),

the Lyapunov function L(t) can be written as follows:

P(Sc; Ec; Ic; Sb; Eb; Ib; Ir; H) = T1 (y1 � y�
1 ln y1) + T2 (y2 � y�

2 ln y2) + T3 (y3 � y�
3 ln y3)

+ T4 (y4 � y�
4 ln y4) + T5 (y5 � y�

5 ln y5) + T6 (y6 � y�
6 ln y6)

+ T7 (y7 � y�
7 ln y7) + T8 (y8 � y�

8 ln y8)

(94)

Since a function P is differentiable then from equation (93) the time derivative of P(t) along

the solution of the model system in equation (22a) to (24) is:

dP(t)
dt

= T1 (t)
�

1�
y�

1

y1

�
dy1

dt
+ T2 (t)

�
1�

y�
2

y2

�
dy2

dt
+ T3 (t)

�
1�

y�
3

y3

�
dy3

dt

+ T4 (t)
�

1�
y�

4

y4

�
dy4

dt
+ T5 (t)

�
1�

y�
5

y5

�
dy5

dt
+ T6 (t)

�
1�

y�
6

y6

�
dy6

dt

+ T7 (t)
�

1�
y�

7

y7

�
dy7

dt
+ T8 (t)

�
1�

y�
8

y8

�
dy8

dt

(95)

At the equilibrium point (y� ) we have

�Nc = �1y�
1;

�1 =
�
 
Ic(t)
Nc

+ b
Ir(t)
Nb

+
dH(t)
�+H(t)

+ �
�
;

�+ 
 =
�2y�

1

y�
2
;

�2 =
�
 
Ic(t)
Nc

+ b
Ir(t)
Nb

+
dH(t)
�+H(t)

�
;

�+ �c =

y�

2

y�
3
;
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�Nb = �3y�
4;

�3 =
�
’Ib(t) + aIr(t)

Nb
+

dH(t)
�+H(t)

+ �
�


 + � =
�4y�

4

y�
5
;

�4 =
�
’Ib(t) + aIr(t)

Nb
+

dH(t)
�+H(t)

�

�b + �b =
�
by�

5

y�
6
;

� =
(1� �)
by�

5

y�
7

;

�v =
�cy�

3 + �b (y�
6 + y�

7)
y�

8
:

By substituting y� into equation (95) and through simpli�cations, we then have

dP(t)
dt

= �T1 (t)�1y1

�
1�

y�
1

y1

� 2

+ T2 (t)�2y1

�
1�

y�
2

y2

� �
1�

y�
1

y1y�
2

�

+ T3 (t) 
y2

�
1�

y�
3

y3

� �
1�

y�
2

y2y�
3

�
� �4 (t)�3y4

�
1�

y�
4

y4

� 2

+ T5 (t)�4y4

�
1�

y�
5

y5

� �
1�

y�
4y5

y4y�
5

�
+ T6 (t) �
y5

�
1�

y�
6

y6

� �
1�

y5

y5y�
6

�

+ T7 (t) (1� �)
y5

�
1�

y�
7

y7

� �
1�

y�
5

y�
7

�
+ T8 (t)

�
1�

y�
8

y8

� �
1�

�cy�
3 + �b (y6 + y7)

�cy3 + �b (y6 + y7) y�
8

�

(96)

Thus from the equation (96)

dP(t)
dt

= r + s (97)

where

r = T2 (t)�2y1

�
1�

y�
2

y2

� �
1�

y�
1

y1y�
2

�
+ T3 (t) 
y2

�
1�

y�
3

y3

� �
1�

y�
2

y2y�
3

�

+ T5 (t)�4y4

�
1�

y�
5

y5

� �
1�

y�
4y5

y4y�
5

�
+ T6 (t) �
y5

�
1�

y�
6

y6

� �
1�

y5

y5y�
6

�

+ T7 (t) (1� �)
y5

�
1�

y�
7

y7

� �
1�

y7
5

y�
7

�
+ T8 (t)

�
1�

y�
8

y8

� �
1�

�cy�
3 + �b (y6 + y7)

�cy3 + �b (y6 + y7) y�
8

�

and

s = �T1 (t)�1y1

�
1�

y�
1

y1

� 2

� T4 (t)�3y4

�
1�

y�
4

y4

� 2

(98)
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From the equation (97) and (98), the global stability holds only if dP (t)
dt � 0. Now if r < s then

dP (t)
dt will be negative de�nite which implies that dP (t)

dt < 0. But dP (t)
dt = 0 if and only if yi = y�

i

for (i = 1; 2; :::8). Hence the largest invariant set
n
y�

1; y�
2; :::y�

8 2 D : dP (t)
dt = 0

o
is a singleton

fy� g. By the LaSalle’s invariant principle(La Salle, 1976), it is then implies that y� is globally

asymptotically stable in D if r < s and thusR0 > 1. We then establish the theorem below:

Theorem 3.7

The Endemic Equilibrium Point (EEP ) of a ND (22a) to (24) is globally asymptotically stable

if and only if R0 > 1.

3.3 Newcastle Disease model with Interventions

In this section, the Newcastle disease basic model as described in equation (22a) to (24) is

extended to include time dependent control terms ui (t) for (i = 1; 2; 3) aiming at increasing

the population of healthy chicken, reducing the number of the infected population of the vil-

lage chicken as well as the Newcastle disease virus from the environment. The variable u1 (t)

represent the control efforts to reduce infections to the susceptible chicken through vaccina-

tion, u2 (t) represents the control efforts to reduce the contacts of the infected chicken with the

susceptible chicken by the culling strategy, and u3 (t) represents the control of NDV from the

environment through improving of the environmental hygiene. It is assumed that all control

variables ui (t) are Lebesgue measurable such that 0 � u1 � 1, 0 � u2 � 1 and 0 � u3 � 1. In

the new model, the terms u1 (t)Sc and u2 (t) Ic (t) represents the vaccination of the susceptible

chicken and the culling of the infected chicken respectively.

The Village chicken population is now divided into four subpopulations: the susceptible chicken

Sc (t), the latently infected Ec (t), the severely infected chicken Ic (t) and the vaccinated village

chicken population V (t). Thus, the total village chicken population become Nc (t) = Sc (t) +

Ec (t) + Ic (t) + V (t). We assume that the susceptible village chicken are recruited by the

density dependent birth rate �Nc and the chicken with low immunity that reverted back from

the vaccinated population at the rate �V (t). Chicken at the susceptible population acquires

Newcastle disease virus when interacts with the mildly infected wild birds, Ir (t), the severely

infected chicken, Ic (t) and the unhygienic environment,H (t) and moves to the latently infected
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class at the rate �1 (Ic; Ir; H) de�ned by

�1 (Ic; Ir; H) =
�
 
IcSc
Nc

+ b
IrSc
Nb

+
dH
k +H

�
Sc (99)

After some days, individuals in the latently infected population of the village chicken progress

to the severely infected population at the rate 
Ec. The severely infected population of village

chicken is reduced at the rate (�+ �c + u2) Ic. In the model we assume that the mortality of

NDV in the environment is increased by the rate (�v + u3)H(t). The wild birds population

is also divided into four subpopulations: the susceptible population Sb (t), the latent popula-

tion Eb (t), the severely infected wild bird population, Ib (t) and the mildly infected wild bird

population, Ir (t), which gives its total population as Nb (t) = Sb (t) + Eb (t) + Ib (t) + Ir (t).

The susceptible wild bird population is recruited by the time dependent rate �Nb through birth.

However, the susceptible village chicken acquires NDV when interacts with the severely in-

fected wild birds, Ib (t), the mildly infected wild birds, Ir (t), and the unhygienic environment,

E (t) and moves to the latently infected class at the transmission rate �2 (Ib; Ir; H) de�ned by

�2 (Ib; Ir; H) =
�
’Ib(t) + aIr(t)

Nb
+
dH(t)
�H(t)

�
Sb(t) (100)

After some days depending on the status of the wild birds in the latently infected population,

a proportion � of the latently infected wild bird population progress to the severely infected

population and the remained proportion, 1 � �, progress to the mildly infected population of

wild birds. The model assumes that village chicken and wild bird do not recover after getting

sick from the Newcastle disease but dies due to disease induced death at the rate �c and �b

respectively. The mildly infected wild bird population does have disease induced mortality, its

assumed that they only die naturally. The rest of population dies at the same natural death �. The

environment has only one class denoted by a variable H (t). Other parameters of the model are

described in Table (2). All variables are assumed to be non-negative. Due to the complex nature

of interactions between the village chicken population and the wild birds, we are not introducing

the control variables in the wild bird population but the model assumes that, the environment is

the factor which brings the two population together. The general interactions between village

chicken, wild birds and NDV infested environment with control measures are presented by the

schematic �ow diagram in Fig.5 and the non-linear differential equations describing the model

are given in model system (101) to (103).
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3.3.1 Model Flow Diagram

Based on the assumptions made on the optimal control, the schematic diagram of the ND with

controls is summarized in the �ow diagram as follows:

Figure 5: The �ow chart showing the dynamics of ND with vaccination, culling and environmental

hygiene and sanitation control measures.

From the above assumptions and the model �owchart, the following dynamical system with

control measures u1, u2 and u3 is formulated as follow:

Chicken

dSc(t)
dt

= �Nc + �V �
�
 
Ic(t)
Nc

+ b
Ir(t)
Nb

+
dH(t)
�+H(t)

+ �
�
Sc(t)� u1Sc(t) (101a)

dEc(t)
dt

=
�
 
Ic(t)
Nc

+ b
Ir(t)
Nb

+
dH(t)
�+H(t)

�
Sc(t)� (�+ 
)Ec(t) (101b)

dIc(t)
dt

= 
Ec(t)� (�c + �+ u2)Ic (t) (101c)

dV (t)
dt

= u1(t)Sc (t)� (�+ �)V (t) (101d)
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Wild birds

dSb(t)
dt

= �Nb �
�
’Ib(t) + aIr(t)

Nb
+ d

H(t)
�+H(t)

+ �
�
Sb(t) (102a)

dEb(t)
dt

=
�
’Ib(t) + aIr(t)

Nb
+ d

H(t)
�+H(t)

�
Sb(t)� (
 + �)Eb(t) (102b)

dIb(t)
dt

= �
Eb(t)� (�b + �)Ib(t) (102c)

dIr(t)
dt

= (1� �)
Eb(t)� �Ir(t) (102d)

dH(t)
dt

= �cIc(t) + �b (Ib(t) + Ir(t))� (�v + u3)H (t) (102e)

Environment

dH(t)
dt

= �cIc(t) + �b (Ib(t) + Ir(t))� (�v + u3)H (t) (103)

With initial conditions,

Sc(0) > 0, Ec(0) � 0; Ic(0) � 0, V (0) � 0, Sb(0) > 0, Eb(0) � 0, Ib(0) � 0, Ir(0) � 0,

H(0) � 0, u1(0) � 0, u2(0) � 0, u3(0) � 0.

3.3.2 Formulation of the Cost Function

From the Newcastle model with controls in equation (101) � (103), we use the variable X (t)

to represent the disease state variables and ui (t) to represent different control efforts used for

reducing the spread of ND among the village chicken. Our state equation is now appear as:

dX
dt

=M (t;X(t); ui (t)) (104)

The time dependent control variable ui (t) (i = 1; 2; 3) is considered on the time interval dt0; tfe

and allows the variable X (t) to be minimized at any point in the interval. Our purpose is to

minimize the number of the severely infected village chicken and the concentration of NDV

in the surroundings while keeping the cost of control as low as possible. Therefore, to reach

J (u� (t)) at a minimum cost we formulate an optimal cost function of our problem over the

optimal set of control U = fu1 (t) ; u2 (t) ; u3 (t)g as follows:

J = min
ui (t)2U

Z tf

t0

 

A1u1 (t)Sc (t) + A2u2 (t) Ic (t) + A3u3 (t)H (t) +
1
2

3X

i=1

Liu2
i (t)

!

dt

(105)
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subject to:
dX
dt

=M (t;X(t); u (t)) ; t 2 [t0; tf ]

X (0) = X0; X (tf )

ui (t) 2 U : fui (t) ; 0 � ui (t) � 1g

X (t) > 0; ui (t) � 0

whereM (X (t)) denote the relative weight of the controls. In the equation (105), A1Sc, A2Ic

and A3H are the costs associated with the control of the susceptible village chicken, severe

infected wild birds and the unhygienic environment respectively, while the function L1
2 u

2
1, L2

2 u
2
2

and L3
2 u

2
3, are the additional costs associated with each control measure. We choose quadratic

terms in the controls in the objective functional (105) with the assumption that the cost are in a

nonlinear form and also to avoid the bang bang or singular optimal control cases (Joshi et al.,

2006; Kinene et al., 2015; Asamoah et al., 2017). Therefore, it is needed to �nd the optimal

control (u�
1 (t) ; u�

2 (t) ; u�
3 (t)) such that,

J (u�
i (t)) = min

ui (t)2U
fJ (ui (t))g (106)

Then, the Pontryagin’s Maximum Principle (PMP ) as described in (Lenhart and Workman,

2007; Anita et al., 2011) is applied to �nd the optimal solution of the model (104). Firstly, the

Hamiltonian function H (t;X (t) ; u (t) ; � (t)) is formulated by introducing the adjoint func-

tion, � (t), which saves as the Lagrangian multiplier for our optimal control model and later the

Pontryagin’s Maximum Principle necessary conditions (adjoint, transvesality and the optimality

conditions) are applied to �nd the optimal solution J (u� (t)) of our model.

3.3.3 Analysis of an Optimal Control Model

Using the formulated optimal control problem (104) constrained with the control variables

fui (t) 2 Uj 0 � ui (t) � 1g ; t 2 [t0; tf ], and the state variables Sc (t), Ec (t), Ic (t), V (t),

Eb (t), Ib (t), Ir (t), and H (t) in (105), then we prove the following:

(i) Existence of the optimal controls

(ii) Characterization of the optimal control problem
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(iii) Find the numerical solution of the optimal control model

(iv) And we investigate how the optimal control variables depends on various parameters of

the system (101)� (103) (Joshi et al., 2006).

3.3.4 Existence of the Optimal Controls

An Optimal control problem exists if the �ve necessary conditions that de�nes the optimal

solutions fui (t) 2 Uj 0 � ui (t) � 1g ; t 2 [t0; tf ] of the problem (101) � (103) derived by

Pontryagin’s Maximum Principle are satis�ed. Before proving for the existence of the optimal

solution, we state the following theorem;

Theorem 3.8

Given an optimal problem N (t;X (t) ; ui (t)), subject to its initial boundary condition

t 2 [t0; tf ] with a state variable X (t) 2 R9 and a control variable ui (t) 2 R3, then there exists

an optimal solution J (u�
i ) such that J (u�

i ) = min
ui 2U
f(J (ui)g for i = (1; 2; 3) if the following

necessary conditions are satis�ed;

(i) The set of controls and the corresponding state variables is non empty.

(ii) The control set U is convex and closed.

(iii) The right hand side of the state system is bounded by the linear function in the state and

control variables

(iv) The integrand of the objective function is convex.

(v) There exists constants a1, a2 > 0 and ! > 1 such that the integrand of the objective

function is bounded below by a1 (ju1j+ ju2j+ ju3j)
!
2 � a2

Proof: the existence of an optimal control is veri�ed by conditions stated in (Fleming and

Rishel, 1975). From our optimal problem M ((X) (t) ; u (t)) in equation (104), the set of all

state variablesX (t) and the control variables fui (t) 2 Uj 0 � ui (t) � 1g ; t 2 [t0; tf ] are non-

negative, hence the �rst condition is satis�ed (Kung’aro et al., 2015). By de�nition, the optimal
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Figure 27:  Deterioration and spoilage control of fresh vegetables 

(vii)  Co-occurrence of pesticides residues and bacterial contaminants 

Co-contamination of pesticide residues and pathogenic bacteria was reported in the tested 

samples. A considerable proportion (46.4%) of fresh vegetables tested positive for both 

pesticide residues and bacterial contaminants. Vegetables from farms (60.7%) were more 

contaminated with both pesticides and bacterial contaminants compared to vegetable samples 

from the market places (41.8%). The difference on vegetable contamination between the two 

sites was statistically significant (p = 0.010).  The number of bacterial pathogens isolated 

from a single sample differed significantly among market places (p = 0.022), while the 

difference was not significant for pesticide residues (p = 0.318) in the same locations. 

Furthermore, the level co-contamination of fresh vegetables was significantly different 

among the vegetable samples (p = 0.02) with onions (64.7%) and Chinese cabbage (54.5%) 

being highly contaminated with both pesticides residues and bacterial contaminants compared 

with carrots (14.3%) and sweet paper (18.8%) (Table 53a and 53b). 
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acetylcholinesterase inhibitors, are discussed in relation to the low level of AChE activity 

among farmers (Colovic et al., 2013).  

Organophosphorus and carbamates are the main pesticides used under the current study. 

Occupational exposure to mixture of these chemicals results in the decreased 

acetylcholinesterase (AChE) activity as also reported elsewhere (Singh et al., 2011), and the 

use of these agricultural chemicals without necessary protection may lead to alterations in the 

genetic materials and the possible development of some types of tumors (Bhalli et al., 2009). 

Exposure to pesticide had induced acute as well as severe pesticides poisoning. This is 

similar to the farmers in Vietnam who experienced acute pesticides poisoning due to 

occupational exposure to organophosphate and carbamate pesticides (Dasgupta et al., 2007). 

This occupational exposure to mixture of OPs may cause DNA damage, hepatic and renal 

toxicity (Singh et al., 2011).  Smallholder vegetable producers are therefore at risk of these 

health effects of pesticides exposure. 

The mostly used organophosphate and carbamate pesticides may therefore be associated with 

the progressive fall in AChE levels of exposed farmers. Occupational exposure to a mixture 

of pesticides (organophosphates, carbamates, pyrethroids) and lower AChE levels in exposed 

farmers are significantly associated with DNA damage, neurotoxicity reactive oxygen stress 

(ROS), and increased micronuclei frequencies (Bhalli et al., 2006; Das et al., 2007; 

Naravaneni & Jamil, 2007). DNA damage have been presumed as mechanisms linking 

pesticide exposure to health effects including neurological diseases (Kisby et al., 2009). 

Exposure to carbamates and organophosphates had  also been associated with fatal death, 

hormonal changes, birth defects, and abnormal sperm, ovaries and eggs production (Bhalli et 

al., 2006).  

Smallholder vegetable farmers are occupationally exposed to different mixture of pesticides. 

The exposed farmers and control (unexposed individuals) were involved to determine the 

levels of exposure to pesticides. The use of control groups had been reported in several 

studies (Bhalli et al., 2009; DaSilva et al., 2008; Grover et al., 2003; Liu et al., 2006; 

McKinlay et al., 2008; Naravaneni & Jamil, 2007; Neupane et al., 2014). Occupationally 

exposed farmers were compared with the control group of similar demographic 

characteristics in drawing comparative results and controlling confounding factors 

influencing exposure to organophosphate and carbamate pesticides.  
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The Body Mass Index (BMI) showed no significant difference between the exposed farmers 

and the control group. However, slight variations were noted among different BMI categories 

of both the exposed and control groups.   Majority of both exposed farmers and unexposed 

control group had normal BMI (18.50-24.99) Kg/m2 as categorized by the WHO. The 

average BMI for the exposed farmers (22.74 ± 3.23) Kg/m2 was slightly lower than control 

group (23.26 ± 3.38) kg/m2. These findings are similar to  BMI of exposed farmer (21.41 

Kg/m2) and control groups (25.18 Kg/m2) from Nepal (Neupane et al., 2014). Since obesity is 

identified as chronic condition of excessive accumulation of body fat that is associated with 

metabolic complications (Hamouda et al., 2019), this accumulation of body fats may 

accelerate quick absorption of lipophilic organophosphate pesticides thereby increasingly 

depress AChE activity among exposed individuals. Similarly, a pesticide metabolizing 

enzymes and biochemical processes involved may be hindered by excess fats and increasing 

pesticides exposure effects as well. However, studies are needed to validate and evaluate the 

mechanisms involved and cause-effect relationship between BMI and AChE in exposed 

individuals. 

Pesticides exposure varied with nutritional status of the exposed farmers. Farmers who were 

either undernourished (underweight) or over nutrition (overweight and obese) were 

significantly exposed compared with the normal BMI individuals.  Nutritional status of the 

farmers is therefore suggested to be another risk factor for pesticides exposure. Poor feeding 

habits among rural farming communities can therefore be linked to the exposure status of the 

farmers. Statistically significant association between AChE inhibition and BMI indicates that, 

nutritional status of the farming community influences exposure risks of the farming 

community. Immunotoxicity of pesticides especially carbamates (Dhouib et al., 2016) can 

also be associated to increased exposure among underweight and obese farmer because BMI 

had been strongly correlated and associated with human immune system (Ilavská et al., 

2012). Both the underweight and obesity may be immunal-compromised, hence have 

increased risk of infection (Dobner & Kaser, 2018). 

Farmers had been handling pesticides for a considerable long period of time, most over 10 

years. They are aware of risk behaviours which increase risks of pesticides exposure and to a 

large extent avoid them during pesticides handling and management. Smoking, drinking and 

�H�D�W�L�Q�J�� �Z�K�L�O�H�� �V�S�U�D�\�L�Q�J�� �Z�D�V�� �Q�R�W�� �D�� �F�R�P�P�R�Q�� �S�U�D�F�W�L�F�H�� �R�I�� �W�K�H�� �I�D�U�P�H�U�V���� �L�Q�G�L�F�D�W�L�Q�J�� �I�D�U�P�H�U�V�¶��

�D�Z�D�U�H�Q�H�V�V�� �R�Q�� �W�K�H�� �S�H�V�W�L�F�L�G�H�¶�V�� �H�[�S�R�V�X�U�H���� �7�K�H�V�H�� �I�D�U�P�H�U�V�¶�� �U�L�V�N�� �E�H�K�D�Y�L�R�X�U�V�� �G�X�U�L�Q�J�� �S�H�V�W�L�F�L�G�H�V��

handling are different from previous studies which reported that farmers were aware of the 
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symptoms in this current study are far above the average number of symptoms (4.78) 

reported by farmers and that of control (1.58). Exposed smallholder farmers in Tanzania 

reported significantly multiple and higher number of exposure symptoms compared with 

other developing countries (Cotton et al., 2018; Naravaneni & Jamil, 2007). Analysis of 

reported symptoms indicates that almost all were statistically significant when compared to 

controls. The most reported exposure symptoms which significantly differed from the control 

group include tiredness, fatigue, and soreness in joints, thirst, headache, skin irritation, 

excessive salivation and abdominal pain. These symptoms had been described to be typical 

symptoms of exposure due to OPs and carbamate pesticides (Alavanja et al., 2004). 

Based on severity of exposure, most of the signs and symptoms reported indicated mild 

pesticide poisoning and severe pesticides poisoning. Pesticides exposure is associated with a 

range of symptoms as well as deficits in neurobehavioral performance and abnormalities in 

nerve function (Alavanja et al., 2004). Nevertheless, other studies showed that more severe 

cases of pesticides exposure was manifested by developing muscle weakness and muscle 

twitches, changes in heart rate, and bronchospasm and can progress to convulsions and coma 

(Alavanja et al., 2004). Other symptoms were neurobehavioral and those associated with 

muscles, epithelia/mucosal surfaces respiratory and gastro-intestinal tract.  

The main root of exposure was dermal, optical and respiratory, increasing health risks to the 

farming community. Similarly, absorption through the dermal pathway is the most important 

route of uptake by pesticides workers (Anwar, 1997). Pesticides exposure, either occupational 

or environmental results in detrimental human health disorders (Zacharia, Kishimba & 

Masahiko, 2010). 

4.2.3 Levels of pesticides residues and bacterial contamination of vegetables produced 

under smallholder production systems  

Locally produced and consumed vegetables are highly contaminated with pesticide residues, 

posing a critical threat to the fate and sustainability of smallholder vegetable production and 

food safety concerns. Fresh vegetables were found to be contaminated with a wide range of 

pesticides in this study, which increases dietary exposure risks. A total of 52 different types 

of pesticide residues were detected from all vegetable samples. This number is much higher 

than that reported from other countries (Bhanti & Taneja, 2007; Chen et al., 2011; Wu et al., 

2017) as compared with 22 pesticide residues detected in vegetable samples from China 

(Chen et al., 2011).  
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cabbage being highly contaminated with both pesticides and pathogenic bacteria which 

further signifies major public health concerns.  

Binary logistic regression analysis showed the association between pesticide residues and 

bacterial contamination of vegetables. Pesticides residues were more likely to induce 

bacterial contamination. Excessive pesticides reported among smallholder farmers in 

Tanzania (Ngowi et al., 2006) may account for this increased microbial contamination 

because pesticides had been found to support the survival and growth of Pseudomonas, and 

Escherichia coli (Ng et al., 2005). This is in support of the hypothesis that pesticide chemical 

composition can act as stimulatory substrate for microbial growth (Ng et al., 2005). Likewise, 

pesticide solutions sprayed on agricultural crops in controlling pests and insects, mostly with 

organophosphates and carbamates as the active ingredients had been reported to provide 

suitable environment for the survival and growth of human pathogenic microbes, including E. 

coli and Salmonella (DuPlessis et al., 2015).  

Unhygienic handling of vegetables, such as the use of the same wiping cloth/towel in 

cleaning fresh vegetables increased the likelihood of contaminating fresh fruits and 

vegetables with both pesticides and bacterial contaminants. This is in line with WHO report 

that farmers and farm workers may be sources or vehicles for contamination of produce in the 

growing field as foodborne outbreaks have been attributed to poor hygiene practices of food 

handlers (WHO, 2008). This current study shows that water used in irrigation, storage 

practices, attending pesticides safe use and hygienic handling of vegetables, and splashing 

water to freshen vegetables did not significantly influence co-contamination of fresh 

vegetables.  Therefore, pesticide used in smallholder vegetable production may be perceived 

as the major source of microbial contamination among many others. High levels of pesticides 

residues and biological contamination of fresh vegetables found from the analyzed samples 

may be explained by increased use of pesticides.  
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The presence of pesticide residues in fresh vegetables influenced bacterial contamination, 

signifying the effects of pesticide use on bacterial contamination of fresh vegetables. A 

significant association was found between pesticide residues and bacterial contamination. 

Fresh vegetables locally produced and consumed have traces of faecal and environmental 

contamination. Pseudomonas aeruginosa, citrobacter, E. coli, Enterobacter, Klebsiella 

oxytoca and Salmonella were isolated from fresh vegetables. 

There is weak regulatory enforcement of food safety regulations both at the production and 

marketing levels. Equally, there are no food safety standards targeting fresh vegetables both 

at the production and marketing levels. The study revealed excessive use, pesticides misuse 

and malpractices in onion and tomato production which also poses both health and 

environmental risks of pesticides exposure. Food safety risks of both chemical and biological 

contamination are higher in fresh vegetables in markets compared with farms, respectively. 

High levels of pesticides residues and biological contaminants in fresh vegetables may be 

explained by increased use of pesticides, lack of food safety standards both at production and 

marketing levels.  

5.2 Recommendations  

Since pesticide application will continue to be an important aspect of smallholder vegetable 

production in low income countries like Tanzania in controlling pests and diseases, strict 

guidelines (policy) on how these pesticides should be distributed, sold to farmers, used and 

disposed need to be enforced at all levels. Educating farmers and promoting safe use of 

pesticides and introduction of greener pesticides in smallholder vegetable production systems 

is vital. Investing in the green chemistry and utilizing the advancement of nanotechnology in 

the production of greener pesticides as the sustainable means of managing food safety, human 

and environmental exposure to pesticides is required. 

Mandatory pesticides safe use training offered by TPRI to pesticides dealers should be 

enhanced and offered at technician (certificate/diploma) level to develop competent skills on 

pesticides safe use. There is also an urgent need for developing pesticides monitoring and 

surveillance systems, to monitor and control pesticides use, handling and management at 

farmer level, to address pesticides exposure. 

This study recommends the restriction of pesticides classified as Highly Hazardous Pesticides 

(HHP) in smallholder vegetable production to control both dietary and occupational exposure 
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Cinerin 1 0.7 
Oxamyl 1 0.7 
Methiocarb 1 0.7 
Anilazine 1 0.7 

Total 148 166.9 
*Multiple response allowed 
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increased since the population is well controlled. However, there is a decline in the infected

population of chicken and the concentration of NDV from the environment as seen in the Fig.

32 (b) and32 (c) respectively. The control pro�le in Fig.32 (d) shows that, the vaccination(u1)

remains at its upper bound throughout the year while the environmental hygiene and sanitation

control(u3) is maintained at its upper bound for the �rst41days and thereafter it steadly decline

to its lower bound. From these results we can conclude that to control Newcastle disease it is

important to emphasize on the provision of the vaccines than the sanitation and hygiene of the

environment.

Figure 33: The Graph shows the effects of Culling and Environmental Hygiene and Sanitation in the

Chicken Population

In this strategy, the culling(u2) and Environmental hygiene and sanitation(u3) controls are

used together to optimize the objective functionalJ in (7) while u1 is set to zero. In Fig.

33(a) we observe that, the number of susceptible chicken increases while in the Fig.33(b) and

33(c) there is signi�cant decrease of both infected chicken and the NDV in the surroundings

respectively. Fig.33(d) shows the control pro�le foru3 is not stable as it drop to zero from the

beginning of the control which make its practical implementation to be rather challenging.
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Figure 34: The Graph shows the effects of Vaccination, Culling and Environmental hygiene and

sanitation

In this strategy, all controls (u1), (u2) and (u3) are used together to optimize the objective func-

tional J in (7). Under this control strategy, the combination shows a signi�cant difference in

comparison before and after the control. In the Fig. 34(a) it is shown that the susceptible popu-

lation of chicken is increasing while the infected population of chicken and the concentration of

NDV decline as in Fig. 34(b) and Fig. 34(c) respectively. In Fig. 34(d), the vaccination control

(u1) is maintained at its maximum value for the whole year while the culling control (u2) main-

tains its maximum value for 49 days and then starts to decline slowly for 373 days and further

decline to zero. The environmental and sanitation strategy (u3) have very little contributions in

this combination for controlling of the Newcastle disease as it reduces to zero after only 5 days.

This strategy managed to reduce the rate of transmission of the disease to a very low level and

maintain it at this same level for the entire period of the control program.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, I have presented and analyzed the mathematical model for the transmission dy-

namics and the control of Newcastle Disease (ND) among the village chicken population. The

aim was to get an insight of the transmission dynamics of ND by considering the unhygienic

environment and wild birds as the vital sources of NDV to the village chicken population. The

main tasks of the present work were: (1) to formulate and analyze a basic mathematical model

for ND, (2) to formulate and analyze a mathematical model of ND with vaccination, culling and

environmental hygiene and sanitation control strategies, (3) to evaluate the cost-effectiveness in

the control of ND, and (4) to analyze the economic burden of ND at the family level.

Using the Next Generation Method approach of Van den Driessche and Watmough (2002), the

basic reproduction numberR0 which represents the number of secondary cases which one case

would produce in a completely susceptible population is derived. Stability analysis of the model

equilibria showed that the disease-free equilibrium exists and is globally asymptotically stable

(GAS) when R0 < 1 and unstable when R0 > 1. Similarly, the model endemic equilibrium

exists and is GAS stable if and only ifR0 > 1. This basic model undergoes the phenomenon of

forward bifurcation and the requirement R0 < 1 is a necessary and suf�cient condition for ND

disease elimination in village chicken population.

The bifurcation analysis of the ND model revealed that the equilibrium points of the basic model

undergo the forward bifurcation and the endemic equilibrium point is locally asymptotically

stable for R0 < 1 with R0 close to one. However, the sensitivity analysis of the basic model

indicate that the transmission coef�cient of NDV between the environment and the hosts is the

most positive sensitive parameter in the transmission of the ND.

The basic model is then extended to include three time-dependent control variables: vaccination

of the susceptible chicken u1; culling of the infected chicken u2; and environmental hygiene and

sanitation u3. The study established and proved the existence of an optimal control solution. The
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necessary conditions for optimality were determined using Pontryagin’s maximum principle

(PMP). Based on the numerical results, The study reveal that the combination of the vaccination

u1 and environmental hygiene and sanitation u3 controls reduce the number of the infected

chicken and concentration of the NDV in the environment more than applying these control

measures are applied singly. Thus, the most effective way to reduce the transmission of ND

infection is to encourage the village chicken farmers to vaccinate their chicken regularly against

ND infections and take preventive measures to improve environmental hygiene and sanitation

around their poultry farms.

Further, the cost-effectiveness analysis shows that, the vaccination of the chicken population

is less costly than any other control measure followed by the combination of vaccination and

environmental hygiene and sanitation. The study reveals that, the economic loss at family level

is due to the number of chicken which die due to the ND, the loss of production resulting from

the reduction in the number of laid eggs, and the cost incurred to �nance the control measures

to prevent new infections and the spread of the ND and other chicken diseases in the chicken

yards.

5.2 Recommendations

Population of the infected chickens can be reduced ifR0 < 1, which is possible when vaccina-

tion is combined with maintaining a clean environment. We thus recommend the following to

the chicken farmers, the government, and the policy makers:

(i) In order to avoid the economic losses due to the occurrence of the ND at family level, the

village chicken farmers should be encouraged to timely vaccinate their chicken and make

the area around the chicken yards as clean as possible through environmental hygiene and

sanitation. These practices will help to increase the immunity to chicken but also prevent

them from other bacterial and fungi disease that are caused by unhygienic environment.

(ii) The Government should initiate the education programmes to educate chicken farmers on

how they can intensively manage their chicken as well as increasing their productivity.
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(iii) Policy makers should enforce laws that restricts movements of chicken and their products

from other countries especially during the outbreaks.

5.2.1 Limitations of the study

The studied model might not be perfect to some results due to the following limitations:

(i) The model under this study considered only three aspects: the horizontal transmission,

environment and the environmental hygiene and sanitation for the transmission dynamics

of Newcastle disease under the free range system.

(ii) The assumptions used to formulate the model limits some of the epidemiological factors

for the dynamics of ND to the village chicken under the free range system.

(iii) The study investigated the economic consequence of the Newcastle disease only for two

Districts of Bagamoyo and Kibaha, Pwani Region.

5.2.2 Future Work

Efforts were made to formulate and analyse a comprehensive mathematical model of the trans-

mission dynamics of ND, however, this study is not exhaustive. Not all aspect of the trans-

mission dynamics of ND among the village chicken population were included. Consequently,

future research will potentially include some or all the following: age structure of the chicken

population, seasonal variations (temperature and humidity), trans-ovarial transmission, human

sub-model and other diseases in the chicken yards.
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APPENDICES

INDEX 1: MATLAB code for the Bifurcation analysis diagram

Bifurcation diagram codes Recall the �le served as ’mark2.m’�le R0value = 0:01 : 0:01 : 2;

Rootarray = zeros(length(R0value); 2);

Parameter values used

t = 5;

psi = 0:0083 : 0:000001 : 1; gamma = 0:067;mu = 0:000548; deltac = 0:01984; deltab =

0:025; a = 0:01; d = 0:025; alphac = 0:01667; alphab = 0:002;muv = 0:00219; rho =

0:9; phi = 0:02; b = 0:021; kappa = 10000;Nb = 200000;Nc = 300000;holdonfori = 1 : 1 :

length(R0value);R0 = R0value(i); varpi = �kappa�mu3�phi�rho�gamma�Nb�(muv+

gamma2)�kappa�mu2�Nb�deltac�muv�gamma�a�kappa�mu3�Nb�(muv�gamma2)�

mu�Nb�alphab�d�Nb�(deltab�gamma)�mu2�Nb�alphab�d�Nb�(deltab�gamma2)�a�

kappa�mu2�Nb�muv+gamma2�a�mu�Nb�alphac�d�Nc+gamma2�a�Nb�alphac�d�Nc�

deltab+gamma2�mu�rho�alphac�b�Nc�d�Nb�gamma2�mu�Nb�alphab�d�Nb�deltac+

gamma2�rho�alphac�b�Nc�d�Nb�deltab�gamma2�Nb�alphab�d�Nb�deltab�deltac�

gamma�mu2�Nb�alphab�d�Nb�deltac�gamma�mu2�Nb�alphac�d�Nc�deltab+kappa�

mu3 �Nb �deltab �deltac �muv +2�gamma�kappa�mu3 �Nb �deltab �muv +2�gamma�

kappa�mu3�Nb�deltac�muv�gamma2�mu�Nb�alphac�d�Nc�deltab+gamma2�kappa�

mu2�Nb�deltab�muv+kappa�mu5�Nb�muv+gamma�a�kappa�mu�rho�Nb�deltab�

deltac �muv�kappa�mu2 �phi�rho�gamma�Nb �deltac �muv +gamma2 �kappa�mu�

Nb�deltab�deltac�muv+2�gamma�kappa�mu2�Nb�deltab�deltac�muv�gamma2�a�

kappa�mu�Nb�deltac�muv�gamma2�a�kappa�Nb�deltab�deltac�muv�gamma2�a�

mu�rho�Nb�alphac�d�Nc�gamma2�a�rho�Nb�alphac�d�Nc�deltab+gamma2�rho�

Nb�alphab�d�Nb�deltab�deltac�gamma�a�kappa�mu2�Nb�deltac�muv+gamma�mu�

phi�rho�gamma�Nb�alphac�d�Nc�gamma�mu�Nb�alphab�d�Nb�deltab�deltac+

gamma2�a�kappa�mu2�rho�Nb�muv+gamma�a�kappa�mu3�rho�Nb�muv�gamma2�

a�kappa�mu�Nb�deltab�muv+gamma2�mu�rho�Nb�alphab�d�Nb�deltab�gamma�

a�kappa�mu2 �Nb �deltab �muv�gamma�kappa�mu2 �phi�rho�gamma�Nb �muv +

gamma�mu2�rho�Nb�alphab�d�Nb�deltab+gamma2�a�kappa�mu�rho�Nb�deltab�
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muv+gamma�a�kappa�mu2�rho�Nb�deltab�muv+gamma2�a�kappa�mu�rho�Nb�

deltac�muv+gamma2�a�kappa�rho�Nb�deltab�deltac�muv+gamma�a�kappa�mu2�

rho�Nb�deltac�muv�gamma�a�kappa�mu�Nb�deltab�deltac�muv�gamma�kappa�

mu�phi�rho�gamma�Nb�deltac�muv+gamma�mu�rho�Nb�alphab�d�Nb�deltab�

deltac+kappa�mu4�Nb�deltac�muv�gamma�mu3�Nb�alphac�d�Nc�gamma2�mu�

alphac�b�Nc�d�Nb�gamma2�alphac�b�Nc�d�Nb�deltab+gamma2�kappa�mu3�Nb�

muv+2�gamma�kappa�mu4�Nb�muv�gamma2�mu2�Nb�alphac�d�Nc�gamma2�

mu2�Nb�alphab�d�Nb�gamma�mu3�Nb�alphab�d�Nb+kappa�mu4�Nb�deltab�muv;

tau = gamma � (a � gamma � kappa �mu � rho �muv + a � gamma � kappa � rho � deltab �

muv � a � gamma � kappa �mu �muv � a � gamma � kappa � deltab � (muv + gamma �

kappa) �mu2 �muv + gamma � kappa �mu � deltab � (muv + gamma) � rho � alphab � d �

Nb � deltab + kappa �mu3 �muv + kappa �mu2 � deltab �muv � kappa �mu � phi � rho �

gamma �muv � gamma �mu � alphab � d �Nb � gamma � alphab � d �Nb � deltab) �Nb;

psi = 1=2 � (varpi:=tau);

H = 0; Ir = 0;A = mu �Nc � (deltac +mu) � (mu+ gamma) � (kappa+H);

B = Nb �Nc � (kappa+H) + b �Nc � (deltac +mu) � (mu+ gamma) � (kappa+H) � Ir +

mu �Nb �Nc � (kappa+H) � (deltac +mu) � (mu+ gamma);

C = b �mu �Nc � (kappa+H) � Ir + d �mu � gamma �Nb � (Nc):2 � (1�R0);

p = [A;B;C]; r = roots(p); len = length(r);

for t = 1 : 1 : lenif(imag(r(t)) = 0jjreal(r(t) < 0));

Rootarray(i; t) = 0;

else

Rootarray(i; t) = r(t);

end; end; end; f = 1;

f = f + 1;R0valueCr = f ; forj = R0valueCr : 1 : length(R0value)Rootarray(j; :

) = sort(Rootarray(j; :)); endf1 = R0valueCr;while(Rootarray(f1; 1) = 0)f1 =

f1 + 1; endR0valueCr2 = f1;Zero1st = R0value(1; 1 : R0valueCr2� 1);

yzero = zeros(2; length(Zero1st));Unstable = R0value(1; R0valueCr :

length(R0value));

figure(1)

plot(Unstable; Rootarray(R0valueCr : length(R0value); 2);0r ��0;0LineWidth0; 4)
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Xlabel(0BasicReproductionnumber;R0;0;0FontSize0; 12)

Y label(0FractionofinfectedLivestock0;0FontSize0; 12)

hold off

figure(2)

plot(R0value;Rootarray(:; 1);0r ��0; R0value;Rootarray(:; 2);0b0;0LineWidth0; 4)

Xlabel(0BasicReproductionnumber;R0;0;0FontSize0; 12)

Y label(0Fractionofinfectedchicken0;0FontSize0; 12)

INDEX 2. MATLAB Code used for the simulation of the ND basic model

clear all

close all

tspan = [0 1000];

y0 = [2000 1200 1800 3000 1000 900 700 5000];

figure(1)

plot(t; y(:; 1);0g0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Susceptiblevillagechicken0)

hold off

hold on

figure(2)

plot(t; y(:; 2);0r0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Exposedvillagechicken0)

hold off

hold on

figure(3)plot(t; y(:; 3);0b0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Infectedvillagechicken0)hold off

hold on

figure(4)

plot(t; y(:; 4);0m0;0LineWidth0; 1:5)

111



Xlabel(0Time(days)0)

Y label(0Susceptiblewildbirdpopulation0)

hold off

hold on

figure(5)

plot(t; y(:; 5);0k0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Exposedwildbirdspopulation0)

hold off

hold on

figure(6)

plot(t; y(:; 6);0r0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Infectedwildbirdspopulation0)

hold off

hold on

figure(7)

plot(t; y(:; 7);0:b0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Carrierwildbirdspopulation0)

hold off

hold on

figure(8)

plot(t; y(:; 8);0:m0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0NDV intheEnvironment0)

hold off

hold on

figure(9)

plot(t; y(:; 1);0g0; t; y(:; 2);0r0; t; y(:; 3);0b0; t; y(:; 4);0m0; t; y(:; 5);0k0; t; y(:; 6);0:r0; t; y(:; 7);
0:b0; t; y(:; 8);0:m0;0LineWidth0; 1:5)
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Xlabel(0Time(days)0)

Y label(0TotalPopulations0)

legend(0Susceptiblechicken0;0Exposedchicken0;0Infectedchicken0;0Susceptiblewildbirds0;
0Exposedwildbirds0;0Infectedwildbirds0;0Carrierwildbirds0;0NDV inEnvironment0)

hold off

INDEX 3. Main Function for plotting the equilibrium points

functiondy = Trial1( ; y)

dy = zeros(size(y));

Forthediseasefreeequilibriumpoint

psi = 0:0001;L = 0:0067; l = 0:2; deltac = 0:02; deltab = 0:075; a = 0:03; d =

0:001; alpha = 0:1; kappa = 10000;muv = 0:137; rho = 0:1; phi = 0:004; r =

0:28; sigma1 = 100; sigma2 = 200;Fortheendemicequilibriumpoint

psi = 0:0083;L = 0:067; l = 0:000548; deltac = 0:01984; deltab = 0:025; a = 0:01; d =

0:025; alphac = 0:01667; alphab = 0:002;muv = 0:00219; rho = 0:9; phi = 0:02; r =

0:021; kappa = 10000;

Sc = y(1);Ec = y(2); Ic = y(3);Sb = y(4);Eb = y(5); Ib = y(6); Ir = y(7);H = y(8);

Nb = 1000;Nc = 2000;

EquationsoftheNDbasicmodel

dy(1) = l �Nc � (r � Ir:=Nb + psi � Ic:=Nc + (d �H):=(kappa+H)) � Sc� l � Sc;

dy(2) = (r � Ir:=Nb + psi � Ic:=Nc + (d �H):=(kappa+H)) � Sc� (l + L) � Ec;

dy(3) = L � Ec� (deltac + l) � Ic;

dy(4) = l �Nb � (phi � Ib:=Nb + a � Ir:=Nb + (d �H):=(kappa+H)) � Sb� l � Sb;

dy(5) = (phi � Ib:=Nb + a � Ir:=Nb + (d �H):=(kappa+H)) � Sb� (l + L) � Eb;

dy(6) = rho � L � Eb� (deltab + l) � Ib;

dy(7) = (1� rho) � L � Eb� l � Ir;

dy(8) = alphac � Ic+ alphab � (Ib+ Ir)�muv �H;

INDEX 4. Endemic equilibrium point of the ND model

clear

close all
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tspan = [0 1000];

y0 = [1200 300 500 3000 400 900 700 5000]; [t; y] = ode45(@Trial1; tspan; y0);

figure(5)

plot(t; y(:; 5);0g0;0LineWidth0; 1:5)

legend(0I0
c)

Xlabel(0Time[days]0)

Y label(0Exposedwildbirdspopulation0)

hold on

tspan = [0 1000]

y0 = [1200 300 500 3000 800 900 700 5000]; [t; y] = ode45(@Trial1; tspan; y0); plot(t; y(:

; 5);0b0;0LineWidth0; 1:5)

xlabel(0Time[days]0)

ylabel(0Exposedwildbirdspopulation0)

tspan = [0 1000]; y0 = [1200 300 500 3000 1200 900 700 5000]; [t; y] =

ode45(@Trial1; tspan; y0);

plot(t; y(:; 5);0m0;0LineWidth0; 1:5)

xlabel(0Time[days]0)

ylabel(0Exposedwildbirdspopulation0)

hold on

tspan = [0 1000];

y0 = [1200 300 500 3000 2000 900 700 5000];

plot(t; y(:; 5);0r0;0LineWidth0; 1:5)

Xlabel(0Time(days)0)

Y label(0Exposedwildbirdspopulation0)

legend(0Eb(0) = 4000;0Eb(0) = 8000;0Eb(0) = 14000;0Eb(0) = 20000)

hold off

INDEX 5. MATLAB Code used for Numerical Simulations of the ND Model with control

measures

The main �le for calling the state and the adjoint systems

clc
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clear all

close all

t0 = 0; tf = 400;N = 8000; time = linspace(t0; tf;N);

y0 = [200000 12000 5000 0 300000 10000 400 500 5000 0];

Constant = [0:4 0:067 0:00058 0:002 0:025 0:01 0:1 0:001667 0:000002 0:00219

0:998 0:02 0:21 1000000 0:0001 0:0001 0:01 202 20 10 10 0:0001];

psi = Constant(1); gamma = Constant(2); l = Constant(3); deltac = Constant(4);

deltab = Constant(5); a = Constant(6); d = Constant(7); alphac = Constant(8);

alphab = Constant(9);muv = Constant(10); rho = Constant(11); phi = Constant(12);

q = Constant(13); kappa = Constant(14);Lambda1 = Constant(15);

Lambda2 = Constant(16);A1 = Constant(17);A2 = Constant(18);A3 = Constant(19);

D1 = Constant(20);D2 = Constant(21);D3 = Constant(22); varphi = Constant(23);

lf = [0 0 0 0 0 0 0 0 0];

TEST SECTION

u1 u2 u3

U = [0 0 0];

time0 = linspace(t0; tf;N + 1);

init = y0;h = (tf � t0):=N ;

uu = linspace(0; 0; N + 1);

u1 = uu0;u2 = uu0;u3 = uu0;

U = [u1u2u3];

Uu = [u20u20u30];

break

FORWARD RUNGE KUTTA FOR STATES

[Tx;X] = rk4foward(@Mark1State; t0; tf;N; init; U; Constant);

X = X0;

Tx = Tx0;

figure(1)

subplot(2; 3; 1)

plot(Tx; (X(:; 1));0�r0;0Linewidth0; 1:5);

hold on

115



plot(Tx; (Y (:; 1));0�� b0;0Linewidth0; 1:5);

hold off

set(gca;0FontSize0; 20)

title(0A0;0FontSize0; 30)

Xlabel(0Time(indays)0;0FontSize0; 15);

Y label(0Susceptiblechicken0;0FontSize0; 15);

subplot(2; 3; 2)

plot(Tx; (X(:; 2));0�r0;0Linewidth0; 1:5);holdon

plot(Tx; (Y (:; 2));0�� b0;0Linewidth0; 1:5);holdoff

set(gca;0FontSize0; 10)

title(0B0;0FontSize0; 10)

Xlabel(0Time(indays)0;0FontSize0; 10);

Y label(0Latentinfectedchicken0;0FontSize0; 10);

subplot(2; 3; 3)

plot(Tx; (X(:; 3));0�r0;0Linewidth0; 1:5);holdon

plot(Tx; (Y (:; 3));0�� b0;0Linewidth0; 1:5);holdoff

set(gca;0FontSize0; 10)

title(0C0;0FontSize0; 10)

Xlabel(0Time(indays)0;0FontSize0; 10);

Y label(0Severelyinfectedchicken0;0FontSize0; 10);

subplot(2; 3; 4)

plot(Tx; log10(X(:; 4));0�r0;0Linewidth0; 1:5);

hold on

plot(Tx; log10(Y (:; 4));0�� b0;0Linewidth0; 1:5);

hold off

set(gca;0FontSize0; 10)

title(0D0;0FontSize0; 10)

Xlabel(0Time(indays)0;0FontSize0; 10);

Y label(0V accinatedchicken0;0FontSize0; 10);

subplot(2; 3; 5)

plot(Tx; (X(:; 9));0�r0;0Linewidth0; 1:5);
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hold on

plot(Tx; (Y (:; 9));0�� b0;0Linewidth0; 1:5);

hold off

set(gca;0FontSize0; 10)

title(0E0;0FontSize0; 10)

Xlabel(0Time(indays)0;0FontSize0; 10);

Y label(0Environmentalhygiene0;0FontSize0; 10);

subplot(2; 3; 6)

plot(Tx; Uu(:; 1);0y�0; Tx; Uu(:; 2);0�� b0; Tx; Uu(:; 3);0k0;0LineWidth0; 3);

set(gca;0FontSize0; 10)

title(0F 0;0FontSize0; 10)

Xlabel(0Time(indays)0;0FontSize0; 10);

Y label(0controlprofiles0;0FontSize0; 10);

init = y0;

init2 = lf ;

h = (tf � t0)=N ; u = linspace(0:5; 0:5; N + 1); u1 = u0;u2 = u0;u3 = u0; U = [u1u2u3];

break

IMPLEMENTATION OF THE ALGORITHM

Test 1 topping condition 1 delta = 0.01;

X=init;

i=0; mm=size(X);

NumXX =10e10;

Xnew = rand(N+1,mm(2)).*(repmat(X,N+1,1));

DenXnew=norm(Xnew);

while NumXX/DenXnew¿delta

Xold = Xnew;

oldu = U;

FORWARD RUNGE KUTTA FOR STATES

[Tx;X] = rk4foward(@Mark1State; t0; tf;N; init; U; Constant);
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BACKWARD RUNGE-KUTTA FOR CO-STATES

[Tp; P ] = rk4back(@Mark2Costate; t0; tf;N; init2; U;X;Constant);

UPDATE THE CONTROLS

Sc = X(1; :);Ec = X(2; :); Ic = X(3; :);V = X(4; :);Sb = X(5; :);Eb = X(6; :); Ib = X(7; :

); Ir = X(8; :);H = X(9; :);L1 = P (1; :);L2 = P (2; :);L3 = P (3; :);L4 = P (4; :);L5 =

P (5; :);L6V = P (6; :);L7 = P (7; :);L8 = P (8; :);L9 = P (9; :); g1 = Sc +Ec + Ic +V ; g2 =

Sb + Eb + Ib + Ir;

Control cases of Newcastle disease transmission

case1 : u1 6= 0; u2 = 0; u3 = 0;

u1 = min(1;max(0; Beta1));

u2 = zeros(1; N + 1);

u3 = zeros(1; N + 1);

Uu = [u10u20u30];

U = 0:5 � Uu+ 0:5 � oldu;

Xnew = X0;

NumXX = abs(norm(Xnew �Xold));

DenXnew = norm(Xnew);

i = i+ 1end

PLOTTING

X=Xnew;

Tx =Tx’;

XX=X(:,1); YY=X(:,2); VV=X(:,3); ZZ=X(:,4); EE=X(:,5);MM=X(:,6);GG=X(:,7);

QQ=X(:,8);KK=X(:,9);

Up =[0 0 0]; [T; Y ] = ode45(@Mark1State; time; y0; []; Up; Constant);

save Category2

save(’case1State’,’X’);

save(’case1Control’,’Uu’);

clf �gure(1)
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subplot(2,2,1)

plot(Tx,log10(X(:,1)),’r’,T,log10(Y(:,1)),’�b’,’LineWidth’,2);

Xlabel(’Time (days)’);

Ylabel(’Susceptible village chicken’);

title(’(a)’,’FontSize’,10)

legend(’with control’,’without control’,2);

subplot(2,2,2)

plot(Tx,log10(X(:,3)),’r’,T,log10(Y(:,3)),’�b’,’LineWidth’,2);

Xlabel(’Time (days)’);

Ylabel(’Severely infected village chicken’);

title(’(b)’,’FontSize’,10)

legend(’with control’,’without control’,2);

subplot(2,2,3)

plot(Tx,log10(X(:,9)),’r’,T,log10(Y(:,9)),’�b’,’LineWidth’,2);

Xlabel(’Time(days)’);

Ylabel(’NDV in the environment’);

title(’(c)’,’FontSize’,10)

legend(’with control’,’without control’,2);

subplot(2,2,4) plot(Tx,Uu(:,1),’c’,Tx,Uu(:,2),’b’,Tx,Uu(:,3),’�r’,’LineWidth’,2);

Ylabel(’Control Pro�le’);

Xlabel(’Time(days)’);

title(’(d)’,’FontSize’,10)

legend(0u1 6= 00;0u2 6= 00;0u3 6= 00; 3)

collect all the incidence terms in the ODE U =[0 0 0];

[Tx; Y ] = ode45(@Mark1State; time; y0; []; U; Constant);

Y=(Y);

Inew=sum(Y(:,10))-sum(X(:,10))

Solution of the objective functional Ic = X(:; 3); Ir = X(:; 8);H = X(:; 9);

119



u1=Uu(:,1); u2=Uu(:,2); u3=Uu(:,3); t=T; n=length(t);

for i = 1:n

g3=A1 � u1(i) � Sc(i) + A2 � u2(i) � Ic(i) + A3 � u3(i) �H(i);

h1=(D1/2)*u1(i)*u1(i)+(D2/2)*u2(i)*u2(i)+(D3/2)*u3(i)*u3(i);

Q(i)=g3+h1;

cost=trapz(r,Q)

120



RESEARCH OUTPUTS

Published Papers

1. Chuma, F., Mwanga, G. G. (2019) Stability analysis of equilibrium points of newcastle

disease model of village chicken in the presence of wild birds reservoir. International

Journal of Mathematical Sciences and Computing

2. Chuma F., Mwanga G.G and Masanja V.G (2019) Application of optimal control theory

to Newcastle disease dynamics in village chicken by considering wild birds as reservoir

of disease virus. Journal of Applied Mathematics

121


